下列说法:
①命题“存在
” 的否定是“对任意的
”;
②关于
的不等式
恒成立,则
的取值范围是
;
③函数
为奇函数的充要条件是
;
其中正确的个数是( )
A.3 B.2 C.1 D.0
科目:高中数学 来源: 题型:
定义:对函数
,对给定的正整数
,若在其定义域内存在实数
,使得
,则称函数
为“
性质函数”。
(1) 若函数
为“1性质函数”,求
;
(2) 判断函数
是否为“
性质函数”?说明理由;
(3) 若函数
为“2性质函数”,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=ax2+bx+1(a≠0)对于任意x∈R都有f(1+x)=f(1﹣x),且函数y=f(x)+2x为偶函数;函数g(x)=1﹣2x.(I) 求函数f(x)的表达式;(II) 求证:方程f(x)+g(x)=0在区间[0,1]上有唯一实数根;
(III) 若有f(m)=g(n),求实数n的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com