精英家教网 > 高中数学 > 题目详情

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:


常喝

不常喝

合计

肥胖


2


不肥胖


18


合计



30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为

1)请将上面的列表补充完整;

2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;

34名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.

参考数据:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

【答案】1)表格祥见解析;(2)有,理由祥见解析;(3.

【解析】试题分析:(1)根据全部50人中随机抽取1人看营养说明的学生的概率为,做出看营养说明的人数,这样用总人数减去看营养说明的人数,剩下的是不看的,根据所给的另外两个数字,填上所有数字.

2)根据列联表所给的数据,代入求观测值的公式,把观测值同临界值进行比较,得到有99.5%的把握说看营养说明与性别有关.

3)利用列举法,求出基本事件的个数,即可求出正好抽到一男一女的概率.

试题解析:(1)设常喝碳酸饮料肥胖的学生有人,


常喝

不常喝

合计

肥胖

6

2

8

不胖

4

18

22

合计

10

20

30

2)由已知数据可求得:

因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.

3)设其他工作人员为丙和丁,4人分组的所有情况如下表

小组

1

2

3

4

5

6

收集数据

甲乙

甲丙

甲丁

乙丙

乙丁

丙丁

处理数据

丙丁

乙丁

乙丙

甲丁

甲丙

甲乙

分组的情况总有6中,工作人员甲 负责收集数据且工作人员乙负责处理数据占两种,

所以工作人员甲负责收集数据且工作人员处理数据的概率是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正方体的棱长为的交点,的中点.

(I)求证:直线平面

(II)求证:平面

(III)二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内三点.

(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径

(2)求过点与条件 (1) 的圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的极值;

(Ⅱ) 时,讨论的单调性;进一步地,若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 中点, 交于点

Ⅰ)求证: 平面

Ⅱ)求证: 平面

Ⅲ)在线段上是否存在点,使得?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若存在唯一整数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.某几何体如图所示, 平面 是边长为的正三角形, ,点分别是的中点.

I)求证: 平面

II)求证:平面平面

III)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为分别是棱的中点,过直线的平面分别与棱交于给出以下四个命题

平面平面

当且仅当时,四边形的面积最小

四边形周长是单调函数

四棱锥的体积为常函数

以上命题中假命题的序号为( ).

A. ①④ B. C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:

分组

频数

合计

(1)画出频率分布表,并画出频率分布直方图;

2)估计纤度落在中的概率及纤度小于的概率是多少?

3)从频率分布直方图估计出纤度的众数、中位数和平均数.

查看答案和解析>>

同步练习册答案