精英家教网 > 高中数学 > 题目详情
16.在平面直角坐标系xoy中,参数方程$\left\{\begin{array}{l}{x=3+3cosθ}\\{y=-3+3sinθ}\end{array}\right.$,(θ为参数)表示的图形上的点到直线y=x的最短距离为$3\sqrt{2}-3$.

分析 根据平方关系消去参数化为普通方程,由方程判断出图形特征,利用点到直线的距离公式求出圆心到直线的距离,判断出圆与直线的位置关系,再求出图形上的点到直线y=x的最短距离.

解答 解:由题意知,参数方程$\left\{\begin{array}{l}{x=3+3cosθ}\\{y=-3+3sinθ}\end{array}\right.$,(θ为参数),
消去θ得,(x-3)2+(y+3)2=9,
∴方程(x-3)2+(y+3)2=9表示的图形是以(3,-3)为圆心、3为半径的圆,
则圆心(3,-3)到直线y=x的距离d=$\frac{|3-(-3)|}{\sqrt{2}}$=$3\sqrt{2}$>3,
∴圆与直线y=x相离,
∴圆上的点到直线y=x的最短距离为$3\sqrt{2}-3$,
故答案为:$3\sqrt{2}-3$.

点评 本题考查参数方程化为普通方程,点到直线的距离公式,以及直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+bx+c,y=f(x)在x=-2时有极值,在x=1处的切线方程为y=3x+1.
(1)求a,b,c
(2)求y=f(x)在[-3,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于定义在R上的奇函数f(x),满足f(-x)+f(3+x)=0,若f(-1)=1,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=|2x-3|,若0<2a≤b+1,且f(2a)=f(b+3),则M=3a2+2b+1的取值范围为$\frac{3}{16}$≤M<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知曲线${C_1}:\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$(θ为参数)与曲线${C_2}:\left\{\begin{array}{l}x=t\\ y=kt-2\end{array}\right.$(t为参数)有一个公共点,则实数k的值为$±\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知幂函数y=(a2+a-1)xa+1为R的偶函数,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{{cos{{10}°}+\sqrt{3}sin{{10}°}}}{{\sqrt{1-cos{{80}°}}}}$的值为(  )
A.-2B.2C.$-\sqrt{2}$D..$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列有关命题的说法正确的是(  )
A.命题“?x∈R,均有x2-x+1>0的否定是:“?x∈R,均有x2-x+1<0”.
B.命题“若x=y,则sinx=siny”的逆否命题为真命题.
C.线性回归方$\widehat{y}=b\widehat{x}+a$对应的直线一定经过其样本数据点(x1,y1),(x2,y2),…(xn,yn)中的一个点.
D.“直线与双曲线有唯一的公共点”是“直线与双曲线相切”充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{\sqrt{x-2}}{x-3}$+lg$\sqrt{4-x}$的定义域是(  )
A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)

查看答案和解析>>

同步练习册答案