精英家教网 > 高中数学 > 题目详情
如图,已知F1,F2是椭圆
x2
36
+
y2
24
=1
的两个焦点,P为椭圆上一点,∠F1PF2=60°求:
(1)△PF1F2的面积;
(2)点P的坐标.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)先根据椭圆的方程求得c,进而求得|F1F2|,设出|PF1|=t1,|PF2|=t2,利用余弦定理可求得t1t2的值,最后利用三角形面积公式求解;
(2)运用椭圆的第二定义,即有焦半径公式,t1=e(x0+
a2
c
)=a+ex0,t2=a-ex0,再由t1t2=32,即可解出P的坐标.
解答: 解:(1)∵a2=36,b2=24∴c2=a2-b2=12,
设|PF1|=t1,|PF2|=t2
则t1+t2=12①,t12+t22-2t1t2•cos60°=48②,
由①2-②得t1t2=32,
S△PF1F2=
1
2
×32×sin60°=8
3

(2)设P(x0,y0),则t1=e(x0+
a2
c
)=a+ex0=6+
3
3
x0
则t2=a-ex0=6-
3
3
x0
由(1)得t1t2=32,解得,x0=±2
3
,y0=±4.
则有P(2
3
,4)或(2
3
,-4),或(-2
3
,4),或(-2
3
,-4).
点评:本题主要考查椭圆中焦点三角形的面积的求法,考查椭圆的两个定义,关键是应用椭圆的定义和余弦定理以及焦半径公式转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司有20名技术人员,计划开发A,B两类共50件电子器件,每类每件所需人员和预计产值如下:
产品种类每件需要人员数每件产值/万元
A类 
1
2
 
 7.5
B类 
1
3
 6
今制定计划欲使总产量最高,则应开发A类电子器件
 
件,能使产值最高为
 
万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于任意实数m,关于x的方程log2(ax2+2x+1)-m=0恒有解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
9
-
y2
b2
=1(b>0)的左焦点F1的直线l交双曲线的左支于A,B两点,若|AF2|+|BF2|(F2为双曲线的右焦点)的最小值为14,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求x值;
(2)(理科)从成绩不低于80分的学生中随机的选取2人,该2人中成绩在90以上(含90分)的人数记为ξ,求ξ的概率分布列及数学期望Eξ.
(文)从从成绩不低于80分的学生中随机的选取3人,该3人中至少有2人成绩在90以上(含90分)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a(1≤a≤3)元的管理费,预计当每件商品的售价为x(7≤x≤9)元时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a3=-8,a2+a4=-14.
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为c的等比数列,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

给定两个命题:p:方程x2+mx+1=0有两个相异实根;q:方程4x2+4(m-2)x+1=0无实数根;如果p∧q为假,p∨q为真,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A(2,-2),B(4,-1),C(x,-3)三点共线,则x的值为
 

查看答案和解析>>

同步练习册答案