【题目】已知椭圆
:
(
)过点
,
、
分别为其左、右焦点,
为坐标原点,点
为椭圆上一点,
轴,且
的面积为
.
(Ⅰ)求椭圆
的离心率和方程;
(Ⅱ)设
、
是椭圆上两动点,若直线
的斜率为
,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】若把函数y=sin(ωx﹣
)的图象向左平移
个单位,所得到的图象与函数y=cosωx的图象重合,则ω的一个可能取值是( )
A.2
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)=
是奇函数.
(1)求b的值;
(2)用定义法证明函数f(x)在R上是减函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校设有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两班学生中分别抽取8名和6名测试他们的数学与英语成绩(单位:分),用
表示,下面是乙班6名学生的测试分数:
,
,
,
,
,
,当学生的数学、英语成绩满足
,且
时,该学生定为优秀生.
(Ⅰ)已知甲班共有80名学生,用上述样本数估计乙班优秀生的数量;
(Ⅱ)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名为优秀生的概率;
(Ⅲ)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为
,求
的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:p=
(0≤x≤8),若距离为1km时,宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(1)求f(x)的表达式,并写出其定义域;
(2)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
,抛物线
,
与
有公共的焦点
,
与
在第一象限的公共点为
,直线
的倾斜角为
,且
,则关于双曲线的离心率的说法正确的是()
A. 仅有两个不同的离心率
且
B. 仅有两个不同的离心率
且
C. 仅有一个离心率
且
D. 仅有一个离心率
且![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圆C:x2+y2﹣6x﹣8y+9=0.
(1)判断直线l1与圆的位置关系,并证明你的结论;
(2)直线l2过直线l1的定点且l1⊥l2 , 若l1与圆C交与A,B两点,l2与圆C交与E,F两点,求AB+EF的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Sn为数列{an}的前n项和,an>0,an2+2an=4Sn﹣1.
(1)求{an}的通项公式;
(2)设bn=
,求{bn}的前n项和Tn .
(3)cn=
,{cn}的前n项和为Dn , 求证:Dn<
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com