精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线,抛物线 有公共的焦点 在第一象限的公共点为,直线的倾斜角为,且,则关于双曲线的离心率的说法正确的是()

A. 仅有两个不同的离心率 B. 仅有两个不同的离心率 C. 仅有一个离心率 D. 仅有一个离心率

【答案】C

【解析】 的焦点为 双曲线交点为 横坐标为

可化为

只有一个根在 内,故选C.

【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1) 记A表示事件旧养殖法的箱产量低于50kg,估计A的概率;

(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量50kg

旧养殖法

新养殖法

(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。

附:

P(

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,BC⊥平面APC,AB=2 ,AP=PC=CB=2.

(1)求证:AP⊥平面PBC;
(2)求二面角P﹣AB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )过点 分别为其左、右焦点, 为坐标原点,点为椭圆上一点, 轴,且的面积为.

(Ⅰ)求椭圆的离心率和方程;

(Ⅱ)设是椭圆上两动点,若直线的斜率为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中, 相交于点 平面

(I)求证: 平面

(II)当直线与平面所成的角为时,求二面角的余弦角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河道上有一座圆拱桥,在正常水位时,拱圈最高点距水面9m,拱圈内水面宽22m.一条船在水面以上部分高6.5m,船顶部宽4m,故通行无阻.近日水位暴涨了2.7m,为此,必须加重舰载,降低船身,才能通过桥洞.试问船身至少应该降低多少?(精确到0.01,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知∠B=45°,c=2 ,b= ,则∠A的值是(
A.15°
B.75°
C.105°
D.75°或15°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人进行乒乓球决赛,比赛采取七局四胜制.现在的情形是甲胜3局,乙胜2局.若两人胜每局的概率相同,则甲获得冠军的概率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案