精英家教网 > 高中数学 > 题目详情
为椭圆左、右焦点,过椭圆中心任作一条直线与椭圆交于两点,当四边形面积最大时,的值等于         .               
:,面积最大,
点评:本题考查知识的综合运用能力,具体是椭圆的有关概念、几何量、数性结合、向量的数量积,属于较难题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(1)求椭圆C的方程;
(2)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MNAB,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)已知方程x4+y2=1,给出下列结论:①它的图形关于x轴对称;②它的图形关于y轴对称;③它的图形是一条封闭的曲线,且面积小于π;④它的图形是一条封闭的曲线,且面积大于π.真命题的序号是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知F1(-c,0), F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是
(1)若P是圆M上的任意一点,求证:是定值;
(2)若椭圆经过圆上一点Q,且cos∠F1QF2=,求椭圆的离心率;
(3)在(2)的条件下,若|OQ|=,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在矩形ABCD中,已知A(2,0)、C(-2,2),点PBC边上移动,线段OP的垂直平分线交y轴于点E,点M满足(Ⅰ)求点M的轨迹方程;
(Ⅱ)已知点F(0,),过点F的直线l与点M的轨迹相交于QR两点,且求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
|x|+1=
4-y2

对应的曲线中存在“自公切线”的有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
2
+y2=1的弦被点(
1
2
1
2
)平分,则这条弦所在的直线方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线的顶点在原点O,焦点为椭圆
x2
3
+
y2
2
=1的右焦点F.
(1)求抛物线的方程;
(2)设点P在抛物线上运动,求P到直线y=x+3的距离的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

O为坐标原点,点,点轴正半轴上移动,表示的长,则△ABC中两边长的比值的最大值为
A.B.C.D.

查看答案和解析>>

同步练习册答案