精英家教网 > 高中数学 > 题目详情
如图所示,在△ABC中,已知BC=15,AB∶AC=7∶8,sinB=,求BC边上的高AD的长.

思路分析:由已知设AB=7x,AC=8x,因此要求AD的长只需求出x.△ABC中已知三边只需再有一个角,根据余弦定理便可求出x,而用正弦定理恰好求角C.

解:在△ABC中,由已知设AB=7x,AC=8x,

由正弦定理得=,

∴sinC==×=.

∴C=60°(C=120°舍去,否则由8x>7x,知B也为钝角,不合要求).

    再由余弦定理得

(7x)2=(8x)2+152-2×8x×15cos60°,

∴x2-8x+15=0.

∴x=3,或x=5.

∴AB=21,或AB=35.

    在△ABD中,AD=ABsinB=AB,

∴AD=12,或AD=20.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在△ABC,已知AB=
4
6
3
cosB=
6
6
,AC边上的中线BD=
5
,求:
(1)BC的长度;
(2)sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在△ABC中,点D是边AB的中点,则向量
DC
=(  )
A、
1
2
BA
+
BC
B、
1
2
BA
-
BC
C、-
1
2
BA
-
BC
D、-
1
2
BA
+
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC内作射线AM交BC于点M,则BM<1的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠BAC=90°,∠ABC=60°,AD⊥BC于D,则
AD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC内作射线AM交BC于点M,求BM<1的概率.

查看答案和解析>>

同步练习册答案