精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求的极值;

(2)若对任意的,当时,恒成立,求实数的最大值;

(3)若函数恰有两个不相等的零点,求实数的取值范围.

【答案】(1)的极小值为,无极大值;(2);(3) .

【解析】

(1)求出,判断其符号,得出的单调性即可

(2)变形为,构造函数,转化为恒成立即可

(3)求出,然后分四种情况讨论

(1),令,得.

列表如下:

1

0

极小值

,∴的极小值为,无极大值.

(2)∵,由(1)可知

等价于

.

,则为增函数.

恒成立.

恒成立.

,∵上恒成立

为增函数.

上的最小值为.

,∴的最大值为.

(3)

①当时,当时,单调递增

时,单调递减

所以的极大值为

所以函数至多一个零点

②当时,上单调递增.

③当时,当时,单调递增

时,单调递减

所以的极大值为

的极小值为

所以函数至多有一个零点.

④当时,当单调递增

时,单调递减

所以

Ⅰ:当时,即时,函数至多一个零点.

Ⅱ:当时,

所以存在

所以函数上有唯一的零点.

所以函数上有唯一的零点.

综上所述:实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,解不等式

2)若不等式的解集包含,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为矩形,均为等边三角形,.

1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;

2)在(1)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.

(1)求椭圆C的标准方程;

(2)若直线与椭圆C交于PQ均在第一象限,直线OPOQ的斜率分别为,且(其中O为坐标原点).证明:直线l的斜率k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20197月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间(单位:年)的衰变规律满足(表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的______;经过测定,良渚古城遗址文物样本中碳14的质量是原来的,据此推测良渚古城存在的时期距今约在5730年到______年之间.(参考数据:,,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,的导函数.

1)证明:在定义域上存在唯一的极大值点;

2)若存在,使,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆P与圆内切,且与直线相切,设动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)过曲线上一点)作两条直线与曲线分别交于不同的两点,若直线的斜率分别为,且.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个内角所对的边分别为,设.

1)若,求的夹角

2)若,求周长的最大值.

查看答案和解析>>

同步练习册答案