精英家教网 > 高中数学 > 题目详情
(本小题满分14分)如图,已知四棱锥P-ABCD中,PA⊥平面CDAB, ABCD是直角梯形,AD∥BC,∠BAD90º,BC2,PAAB1.

(1)求证:PD⊥AB;
(2)在线段PB上找一点E,使AE//平面PCD;
(3)求点D到平面PBC的距离.
h=
解:(1)∵PA⊥平面CDAB,AB平面ABCD,∴PA⊥AB,  …………2分
又AB⊥AD,PAAD=A,∴AB⊥平面PAD,                   …………3分
∵PD平面PAD,∴AB⊥PD.                                  …………4分
(2)取线段PB的中点E,PC的中点F,连结AE,EF,DF,
EF是△PBC中位线,∴EF∥BC,;                   …………6分
又AD∥BC,,∴四边形EFDA是平行四边形,         …………8分
∴AE∥DF,又AE平面PDC,DF平面PDC,∴AE∥平面PDC,
故线段PB的中点E是符合题意要求的点.                       …………10分
(3)设点D到平面PBC的距离为h.∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB,∴BC⊥PB,
PB=,S△PBC=PB·BC=,S△BDC=BC·AB="1 " …………12分
∵VP-BDC=VD-PBC,即S△BDC·PA=S△PBC·h,∴h=.          …………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且二面角A-DC-E为直二面角。
(1)求证:CD⊥DE;  (2)求AE与面DEC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,已知直三棱柱ABC—A1B1C1。E、F分别是棱CC1、AB中点。
(1)求证:
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加
以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由沿棱柱侧面经过棱到点的最短路线长为,设这条最短路线与的交点为

(1)求三棱柱的体积;
(2)在面内是否存在过的直线与面平行?证明你的判断;
(3)证明:平面⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正四棱台的上、下底面边长分别为,高为,且侧面积等于两底面积之和,则下列关系正确的是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

语句“直线ab相交于平面α内一点A“用符号表示为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若空间中有四个点,则“这四个点中有三点在同一条直线上”是“这四个点在同一个平面上”的
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四棱锥的四个侧面三角形中,最多有__________个直角三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用一个平面截正方体一角,所得截面一定是(   )
A.锐角三角形B.钝角三角形C.直角三角形D.都有可能

查看答案和解析>>

同步练习册答案