精英家教网 > 高中数学 > 题目详情
6.设点A(2,0),B(0,4),O(0,0),则△AOB的外接圆的方程为(  )
A.x2+y2-2x+4y=0B.x2+y2-2x+2y=0C.x2+y2-2x-4y=0D.x2+y2-2x-2y=0

分析 求出圆心与半径,即可写出△AOB的外接圆方程.

解答 解:由题意,圆心坐标为(1,2),圆的半径为$\sqrt{5}$,
∴△AOB的外接圆方程为(x-1)2+(y-2)2=5,即x2+y2-2x-4y=0,
故选C.

点评 本题考查圆的方程,确定圆心与半径是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)当a=3,解关于x的不等式f(x)>g(a)+2;
(2)当x∈[-a,1)时恒有f(x)≤g(a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=4x的焦点F与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点重合,它们在第一象限内的交点为P,且PF与x轴垂直,则椭圆的离心率为(  )
A.$\sqrt{3}-\sqrt{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知某厂每天的固定成本是20000元,每天最大规模的产品量是360件.每生产一件产品,成本增加100元,生产x件产品的收入函数是R(x)=-$\frac{1}{2}{x^2}$+400x,记L(x),P(x)分别为每天的生产x件产品的利润和平均利润(平均利润=$\frac{总利润}{总产量}$)
(1)每天生产量x为多少时,利润L(x)有最大值,并求出最大值;
(2)每天生产量x为多少时,平均利润P(x)有最大值,并求出最大值;
(3)由于经济危机,该厂进行了裁员导致该厂每天生产的最大规模的产品量降为160件,那么每天生产量x为多少时,平均利润P(x)有最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,$AB=\sqrt{3}$,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,求N点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在边长为2的正三角形ABC中,点P从点A出发,沿A→B→C→A的方向前进,然后再回到点A,在此过程中,即点P走过的路程为x,点P到点A,B,C的距离之和为f(x),则函数y=f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+({a+1})x+2a,({x>0})\\{log_a}({x+1})+1,({-1<x≤0})\end{array}\right.$,(a<0,a≠1),若函数y=|f(x)|在$[{-\frac{1}{3},+∞})$上单调递增,且关于x的方程|f(x)|=x+3恰有两个不同的实根,则a的取值范围为(  )
A.$[{\frac{3}{2},2})$B.$({1,\frac{3}{2}}]∪\left\{{2,6}\right\}$C.{2,6}D.$[{\frac{3}{2},\frac{5}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,且α+β∈($\frac{7π}{4}$,2π),α-β∈($\frac{3π}{4}$,π),求cos2α和cos2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.侧面都是直角三角形的正三棱锥,底面边长为a时,该三棱锥的全面积是(  )
A.$\frac{3+\sqrt{3}}{4}$a2B.$\frac{3}{4}$a2C.$\frac{3+\sqrt{3}}{2}$a2D.$\frac{6+\sqrt{3}}{4}$a2

查看答案和解析>>

同步练习册答案