17£®2016Äê´º½Ú£¬¡°ÇÀºì°ü¡±³ÆÎªÉç»áÈÈÒéµÄ»°ÌâÖ®Ò»£¬Ä³»ú¹¹¶Ô´º½ÚÆÚ¼äÓû§ÀûÓÃÊÖ»ú¡°ÇÀºì°ü¡±µÄÇé¿ö½øÐе÷²é£¬Èç¹ûÒ»ÌìÄÚÇÀºì°üµÄ×Ü´ÎÊý³¬¹ý10´ÎΪ¡°¹Ø×¢µã¸ß¡±£¬·ñÔòΪ¡°¹Ø×¢µãµÍ¡±£¬µ÷²éÇé¿öÈç±íËùʾ£º
  ¹Ø×¢µã¸ß¹Ø×¢µãµÍ  ×ܼÆ
 ÄÐÐÔÓû§ x 5 
 Å®ÐÔÓû§ 7 y 8
 ×ܼƠ10 16 
£¨¢ñ£©ÌîдÈç±íÖÐx¡¢yµÄÖµ²¢ÅжÏÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕÈÏΪÐÔ±ðÓë¹Ø×¢µã¸ßµÍÓйأ¿
£¨¢ò£©ÏÖÒª´ÓÉÏÊöÄÐÐÔÓû§ÖÐËæ»úÑ¡³ö3Ãû²Î¼ÓÒ»Ïî»î¶¯£¬ÒÔX±íʾѡÖеÄͬѧÖÐÇÀºì°ü×Ü´ÎÊý³¬¹ý10´ÎµÄÈËÊý£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©£®
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
 P£¨K2¡Ýk0£© 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
¶ÀÁ¢ÐÔ¼ìÑéͳ¼ÆÁ¿K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$ÆäÖÐn=a+b+c+d£®

·ÖÎö £¨¢ñ£©¸ù¾Ý2¡Á2ÁÐÁª±íÌîд±íÖÐx¡¢yµÄÖµ£¬¼ÆËãK2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉÅжÏÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕÈÏΪÐÔ±ðÓë¹Ø×¢µã¸ßµÍÓйأ»
£¨¢ò£©ÓÉÌâÉèÖªXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£®

½â´ð ½â£º£¨¢ñ£©x=10-7=3¡¢y=16-10-5=1£¬
K2=$\frac{16¡Á£¨3¡Á1-7¡Á5£©^{2}}{10¡Á6¡Á8¡Á8}$¡Ö4.27£¾3.841
¡àÓÐ95%ÒÔÉϵİÑÎÕÈÏΪÐÔ±ðÓë¹Ø×¢µã¸ßµÍÓйأ®
£¨¢ò£©X±íʾѡÖеÄͬѧÖÐÇÀºì°ü×Ü´ÎÊý³¬¹ý10´ÎµÄÈËÊý£¬¿ÉÒÔÈ¡0£¬1£¬2£¬3£¬
P£¨X=0£©$\frac{{C}_{3}^{0}{C}_{5}^{3}}{{C}_{8}^{3}}$=$\frac{10}{56}$£¬P£¨X=1£©=$\frac{{C}_{3}^{1}{C}_{5}^{2}}{{C}_{8}^{3}}$=$\frac{30}{56}$£¬P£¨X=2£©=$\frac{{C}_{3}^{2}{C}_{5}^{1}}{{C}_{8}^{3}}$=$\frac{15}{56}$£¬P£¨X=3£©=$\frac{{C}_{3}^{3}}{{C}_{8}^{3}}$=$\frac{1}{56}$
XµÄ·Ö²¼ÁУº

X 01 2 3
 P$\frac{10}{56}$$\frac{30}{56}$$\frac{15}{56}$$\frac{1}{56}$
ÊýѧÆÚÍûE£¨X£©=0¡Á$\frac{10}{56}$+1¡Á$\frac{30}{56}$+2¡Á$\frac{15}{56}$+3¡Á$\frac{1}{56}$=$\frac{9}{8}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶµÄÔËÓ㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐºÍÆÚÍû£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®4ÕÅ¿¨Æ¬ÉÏ·Ö±ðдÓÐÊý×Ö1£¬1£¬2£¬2£¬´ÓÕâ4ÕÅ¿¨Æ¬ÖÐËæ»ú³éÈ¡2ÕÅ£¬ÔòÈ¡³öµÄ2ÕÅ¿¨Æ¬ÉϵÄÊý×Ö²»ÏàµÈµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Çó·Ö±ðÂú×ãÏÂÁÐÌõ¼þµÄÖ±Ïß·½³Ì£º
£¨1£©Ö±Ïßl1¹ýµãA£¨-1£¬2£©ÇÒÓëÖ±Ïß2x-3y+4=0´¹Ö±£»
£¨2£©Ö±Ïßl2¹ýµãA£¨1£¬3£©£¬ÇÒбÂÊÊÇÖ±Ïßy=-4xµÄбÂʵÄ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èô¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®34¦ÐB£®35¦ÐC£®36¦ÐD£®17¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª¹ýµãM£¨$\frac{p}{2}$£¬0£©µÄÖ±ÏßlÓëÅ×ÎïÏßy2=2px£¨p£¾0£©½»ÓÚA£¬BÁ½µã£¬OÎª×ø±êÔ­µã£¬ÇÒÂú×ã$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3£¬Ôòµ±|AM|+4|BM|×îСʱ£¬|AB|=$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®°ÑÏÂÁÐÓÉÃèÊö·¨±íʾµÄ¼¯ºÏת»¯ÎªÁоٷ¨£º
£¨1£©A={£¨x£¬y£©|x+y=6£¬x¡ÊN£¬y¡ÊN}£»
£¨2£©B={x|$\frac{6}{3-x}$¡ÊN£¬x¡ÊN}£»
£¨3£©C={y|y=-x2+6£¬x¡ÊN£¬y¡ÊN}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª¼¯ºÏA={x|-2£¼x£¼a£¬x¡Êz}£¬Èô¼¯ºÏAÖÐÇ¡ÓÐ3¸öÔªËØ£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨1£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¶ÔÓÚº¯Êýy=f£¨x£©£¬Èôx0Âú×ãf£¨x0£©=x0£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄÒ»½×²»¶¯µã£¬Èôx0Âú×ãf[f£¨x0£©]=x0£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄ¶þ½×²»¶¯µã£¬
£¨1£©Éèf£¨x£©=2x+3£¬Çóf£¨x£©µÄ¶þ½×²»¶¯µã£®
£¨2£©Èôf£¨x£©ÊǶ¨ÒåÔÚÇø¼äDÉϵÄÔöº¯Êý£¬ÇÒx0Ϊº¯Êýf£¨x£©µÄ¶þ½×²»¶¯µã£¬ÇóÖ¤£ºx0Ò²±ØÊǺ¯Êýf£¨x£©µÄÒ»½×²»¶¯µã£»
£¨3£©Éèf£¨x£©=ex+x+a£¬a¡ÊR£¬Èôf£¨x£©ÔÚ[0£¬1]ÉÏ´æÔÚ¶þ½×²»¶¯µãx0£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èô$\frac{sin£¨¦Ð-¦Á£©+sin£¨\frac{¦Ð}{2}-¦Á£©}{sin¦Á-cos¦Á}$=$\frac{1}{2}$£¬Ôò tan2¦Á£¨¡¡¡¡£©
A£®-$\frac{3}{4}$B£®$\frac{3}{4}$C£®-$\frac{4}{3}$D£®$\frac{4}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸