精英家教网 > 高中数学 > 题目详情
2.把下列由描述法表示的集合转化为列举法:
(1)A={(x,y)|x+y=6,x∈N,y∈N};
(2)B={x|$\frac{6}{3-x}$∈N,x∈N};
(3)C={y|y=-x2+6,x∈N,y∈N}.

分析 根据集合的意义,列举即可.

解答 解:(1)A={(x,y)|x+y=6,x∈N,y∈N}={(x,y)|(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)};
(2)B={x|$\frac{6}{3-x}$∈N,x∈N}={0,1,2};
(3)C={y|y=-x2+6,x∈N,y∈N}={2,5,6}.

点评 本题考查了集合的表示方法---列举法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设z=1+i(i是虚数单位),则$\frac{2}{z}$=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=2,AC=2,BC=2$\sqrt{2}$,AA1=2,点D,E分别为棱BC,A1C1的中点.
(Ⅰ)求证:DF∥平面ABB1A1
(Ⅱ)求二面角B-AB1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.户外运动已经成为一种时尚运动.某公司为了了解员工喜欢户外运动是否与性别有关,决定从公司全体650人中随机抽取50人进行问卷调查.
喜欢户外运动不喜欢户外运动合计
男员工5
女员工10
合计50
(Ⅰ)通过对挑选的50人进行调查,得到如下2×2列联表:
已知从这50人中进行随机挑选1人,此人喜欢户外运动的概率是0.6.请将2×2列联表补充完整,并估计该公司男、女员工各多少人;
(Ⅱ)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(Ⅲ)若用随机数表法从650人中抽取员工.先将650人按000,001,…,649编号.恰好000~199号都为男员工,450~649号都为女员工.现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求取到男员工人数的数学期望.
附:
P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
随机数表:
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2016年春节,“抢红包”称为社会热议的话题之一,某机构对春节期间用户利用手机“抢红包”的情况进行调查,如果一天内抢红包的总次数超过10次为“关注点高”,否则为“关注点低”,调查情况如表所示:
  关注点高关注点低  总计
 男性用户 x 5 
 女性用户 7 y 8
 总计 10 16 
(Ⅰ)填写如表中x、y的值并判断是否有95%以上的把握认为性别与关注点高低有关?
(Ⅱ)现要从上述男性用户中随机选出3名参加一项活动,以X表示选中的同学中抢红包总次数超过10次的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设sinα+cosα=m,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.根据下列条件,判断解三角形的情况
(1)a=14,b=16,A=45°;
(2)a=12,c=15,A=120°;
(3)a=8,b=16,A=30°;
(4)b=18,c=20,B=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin($\frac{x}{2}$+$\frac{π}{6}$),x∈R.
(Ⅰ)求f(x)的最小正周期与单调增区间;
(Ⅱ)求函数y=f(4x+2π),x∈[0,$\frac{π}{2}$]的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=2sin2x+2sinx•cosx的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

同步练习册答案