精英家教网 > 高中数学 > 题目详情
12.函数y=2sin2x+2sinx•cosx的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

分析 利用三角恒等变换化简函数的解析式,再利用利用函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,得出揭露.

解答 解:函数y=2sin2x+2sinx•cosx=2•$\frac{1-cos2x}{2}$+sin2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1 的最小正周期是$\frac{2π}{2}$=π,
故选:C.

点评 本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.把下列由描述法表示的集合转化为列举法:
(1)A={(x,y)|x+y=6,x∈N,y∈N};
(2)B={x|$\frac{6}{3-x}$∈N,x∈N};
(3)C={y|y=-x2+6,x∈N,y∈N}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三个人独立破译一密码,他们能独立破译的概率分别是$\frac{1}{5}$、$\frac{2}{5}$、$\frac{1}{2}$,则此密码被破译的概率为(  )
A.$\frac{1}{25}$B.$\frac{6}{25}$C.$\frac{19}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算:
(1)($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$-160.25=-$\frac{1}{2}$;
(2)log93+lg3•log310=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$\frac{sin(π-α)+sin(\frac{π}{2}-α)}{sinα-cosα}$=$\frac{1}{2}$,则 tan2α(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(4-8i)i的虚部是(  )
A.4B.4iC.-8D.-8i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(3,0),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的正射影的数量为(  )
A.-$\sqrt{5}$B.$\sqrt{5}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线的两条渐近线交于B、C两点,过B、C分别作AC、AB的垂线,两垂线交于点D.若D到直线BC的距离小于2(a+$\sqrt{{a}^{2}+{b}^{2}}$),则该双曲线的离心率的取值范围是(  )
A.(1,2)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.经过函数y=-$\frac{2}{x}$图象上一点M引切线l与x轴、y轴分别交于点A和点B,O为坐标原点,记△OAB的面积为S,则S=(  )
A.8B.4C.2D.1

查看答案和解析>>

同步练习册答案