| A. | (1,2) | B. | ($\sqrt{2}$,2) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,$\sqrt{3}$) |
分析 由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AB得$\frac{\frac{{b}^{2}}{a}}{c-x}$•$\frac{\frac{{b}^{2}}{a}}{c-a}$=-1,求出c-x,利用D到直线BC的距离小于2(a+$\sqrt{{a}^{2}+{b}^{2}}$),建立不等式关系,结合双曲线离心率的定义,即可得出结论.
解答 解:由题意,A(a,0),B(c,$\frac{bc}{a}$),C(c,-$\frac{bc}{a}$),由双曲线的对称性知D在x轴上,
设D(x,0),则由BD⊥AC得$\frac{\frac{bc}{a}}{c-x}$•$\frac{\frac{bc}{a}}{a-c}$=-1,
∴c-x=$\frac{{b}^{2}{c}^{2}}{{a}^{2}(c-a)}$,![]()
∵D到直线BC的距离c-x小于2(a+$\sqrt{{a^2}+{b^2}}$),
∴c-x=|$\frac{{b}^{2}{c}^{2}}{{a}^{2}(c-a)}$|<2(a+$\sqrt{{a^2}+{b^2}}$)=2(a+c),
∴$\frac{{b}^{2}{c}^{2}}{{a}^{2}}$<2(c2-a2)=2b2,
∴0<$\frac{{c}^{2}}{{a}^{2}}$<2,
则0<e2<2,即1<e<$\sqrt{2}$,
故选:C
点评 本题考查双曲线的方程和性质,考查三角形的垂心的概念,以及两直线垂直的条件,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com