精英家教网 > 高中数学 > 题目详情
11.求值:$\frac{{\sqrt{3}}}{sin20°}-\frac{1}{cos20°}$=4.

分析 先通分,然后利用辅助角公式结合两角和差的余弦公式进行化简即可.

解答 解:$\frac{{\sqrt{3}}}{sin20°}-\frac{1}{cos20°}$=$\frac{\sqrt{3}cos20°-sin20°}{sin20°cos20°}$=$\frac{2(cos20°•\frac{\sqrt{3}}{2}-sin20°•\frac{1}{2})}{\frac{1}{2}sin40°}$=4•$\frac{cos(20°+30°)}{sin40°}$=$\frac{4cos50°}{cos50°}$=4,
故答案为:4

点评 本题主要考查三角函数值的化简和求值,利用辅助角公式结合两角和差的余弦公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线的两条渐近线交于B、C两点,过B、C分别作AC、AB的垂线,两垂线交于点D.若D到直线BC的距离小于2(a+$\sqrt{{a}^{2}+{b}^{2}}$),则该双曲线的离心率的取值范围是(  )
A.(1,2)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.经过函数y=-$\frac{2}{x}$图象上一点M引切线l与x轴、y轴分别交于点A和点B,O为坐标原点,记△OAB的面积为S,则S=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等比数列{an}的前n项和为Sn,若a1=3,S3=9,求数列{an}的公比与S10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,是真命题的是(  )
A.?x0∈R,e${\;}^{{x}_{0}}$≤0
B.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1
C.?x∈R,2x>x2
D.已知a,b为实数,则a>1,b>1是ab>1的充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数求导正确的是(  )
A.(sinx)′=-cosxB.(cosx)′=sinxC.(2x)′=x•2x-1D.($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为(  )
A.3B.4C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CD的中点.
(Ⅰ)求证:D1F⊥平面ADE;(Ⅱ)求平面A1C1D与平面ADE所成的二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了100人,他们月收入(单位百元)的频数分布及对“楼市限购令”赞成人数如表.
月收入[15,25)[25,35)[35,45)[45,45)[55,65)[65,75)
频数102030201010
赞成人数816241264
(Ⅰ)由以上统计数据填下面2×2列联表并问是否有95%的把握认为“月收入以5500元为分界点”对“楼市限购令”的态度有差异;
月收入低于55百元的人数月收入高于55百元的人数合计
赞成a=c=
不赞成b=d=
合计
(Ⅱ)若对月收入在[15,25),[55,65)的不赞成“楼市限购令”的调查人中随机选取2人进行追踪调查,则选中的2人中恰有1人月收入在[15,25)的概率.
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(下面的临界值表供参考)
(参考公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案