精英家教网 > 高中数学 > 题目详情
12.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$一个焦点F(5,0)到渐近线的距离为4,则其渐近线方程为y=±$\frac{4}{3}$x.

分析 由题意可得c=5,即a2+b2=25,运用点到直线的距离公式可得b=4,a=3,即可得到所求双曲线的渐近线方程.

解答 解:由题意可得c=5,即a2+b2=25,
焦点F(5,0)到渐近线y=$\frac{b}{a}$x的距离为4,
可得$\frac{5b}{\sqrt{{a}^{2}+{b}^{2}}}$=4,
解得b=4,a=3,
可得渐近线方程y=±$\frac{b}{a}$x,即为y=±$\frac{4}{3}$x.
故答案为:y=±$\frac{4}{3}$x.

点评 本题考查双曲线的渐近线方程的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知tanα=-$\frac{1}{3}$,α∈($\frac{3π}{2}$,2π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式ax2-(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知${C}_{n}^{0}$,${C}_{n}^{1}$,${C}_{n}^{2}$,…,${C}_{n}^{n}$中最大值的项只有${C}_{n}^{5}$,则${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$=(  )
A.25B.28C.29D.210

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=3|PF2|,则此双曲线的离心率的取值范围为(  )
A.$(1,\sqrt{2})$B.(1,2]C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$的渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{2}$xC.y=$±\sqrt{5}$xD.y=$±\frac{\sqrt{5}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(-1,2)$,$\overrightarrow b=(2,3)$,$\overrightarrow m=λ\overrightarrow a+\overrightarrow b$,$\overrightarrow n=\overrightarrow a-\overrightarrow b$,若$\overrightarrow m$与$\overrightarrow n$垂直,则实数λ的值是9,若$\overrightarrow m$与$\overrightarrow n$的夹角为钝角,则实数λ的取值范围是λ<9且λ≠-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.中心在原点,焦点在y轴上,虚轴长为$4\sqrt{2}$并且离心率为3的双曲线的渐近线方程为y=±$\frac{\sqrt{2}}{4}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线C的离心率为$\sqrt{3}$,焦点为F1,F2,点A在曲线C上,若|F1A|=3|F2A|,则cos∠AF2F1=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案