精英家教网 > 高中数学 > 题目详情
17.双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$的渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{2}$xC.y=$±\sqrt{5}$xD.y=$±\frac{\sqrt{5}}{2}$x

分析 由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的渐近线方程为y=±$\frac{b}{a}$x,求得双曲线的a,b,即可得到所求渐近线方程.

解答 解:由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的渐近线方程为:
y=±$\frac{b}{a}$x,
双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$的a=2,b=4,
可得渐近线方程为y=±2x.
故选:A.

点评 本题考查双曲线的渐近线方程的求法,注意运用双曲线方程和渐近线方程的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图在平行四边形ABCD中,E、F分别是AB、BC边中点,线段CE、DF相交于点G,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{AG}$=(  )
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{3}{5}$$\overrightarrow{b}$B.$\frac{3}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$C.$\frac{5}{6}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{5}{6}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,钝角α的终边与单位圆的交点为A且A点的纵坐标为$\frac{\sqrt{5}}{5}$,锐角β的终边与单位圆的交点为B且B点的横坐标为$\frac{2\sqrt{5}}{5}$.
(1)求sin(α+$\frac{π}{4}$);
(2)求tan(2α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若双曲线$\frac{x^2}{4}-\frac{y^2}{9}$=1的左支上一点P到右焦点的距离是6,则点P到左焦点的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$一个焦点F(5,0)到渐近线的距离为4,则其渐近线方程为y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线3x2-y2=1的渐近线方程是(  )
A.y=±3xB.$y=±\frac{1}{3}x$C.$y=±\sqrt{3}$xD.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.角α的终边上一点的坐标为$(2sin\frac{2π}{3},2cos\frac{2π}{3})$,则sinα等于(  )
A.$-\frac{1}{2}$B.-1C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{x^2}{{{m^2}+5}}-\frac{y^2}{{4-{m^2}}}$=1的焦距是(  )
A.4B.2$\sqrt{5}$C.6D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)的定义域为(0,+∞),若$y=\frac{f(x)}{x}$在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”.
(1)若f(x)=ax2+ax是“一阶比增函数”,求实数a的取值范围;
(2)若f(x)是“一阶比增函数”,求证:对任意x1,x2∈(0,+∞),总有f(x1)+f(x2)<f(x1+x2);
(3)若f(x)是“一阶比增函数”,且f(x)有零点,求证:关于x的不等式f(x)>2015有解.

查看答案和解析>>

同步练习册答案