分析 (1)由题意可得A和B的坐标,由三角函数定义可得cosα和sinα,由两角和的正弦公式可得;
(2)由(1)可得tanα=-$\frac{1}{2}$,tanβ=$\frac{1}{2}$,由二倍角公式可得tan2α,代入两角和的正切公式可得.
解答 解:(1)由题意可得A(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$),B($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$),
∴cosα=-$\frac{2\sqrt{5}}{5}$,sinα=$\frac{\sqrt{5}}{5}$,∴sin(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$sinα+$\frac{\sqrt{2}}{2}$cosα
=$\frac{\sqrt{2}}{2}$(sinα+cosα)=$\frac{\sqrt{2}}{2}$×(-$\frac{\sqrt{5}}{5}$)=-$\frac{\sqrt{10}}{10}$;
(2)由(1)可得tanα=-$\frac{1}{2}$,tanβ=$\frac{1}{2}$,∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{4}{3}$,
∴tan(2α+β)=$\frac{tan2α+tanβ}{1-tan2αtanβ}$=$\frac{-\frac{4}{3}+\frac{1}{2}}{1-(-\frac{4}{3})×\frac{1}{2}}$=-$\frac{1}{2}$
点评 本题考查三角函数的定义和和差角的三角函数及二倍角公式,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 4$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25 | B. | 28 | C. | 29 | D. | 210 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±2x | B. | y=±$\frac{1}{2}$x | C. | y=$±\sqrt{5}$x | D. | y=$±\frac{\sqrt{5}}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com