精英家教网 > 高中数学 > 题目详情
13.写出命题p:”任意两个等腰直角三角形都是相似的”的否定?p:存在两个等腰直角三角形,它们不相似;判断?p是假命题.(后一空中填“真”或“假”)

分析 根据全称命题的否定是特称命题进行求解即可.

解答 解:命题是全称命题,则命题的否定是:存在两个等腰直角三角形,它们不相似,
∵任意两个等腰直角三角形都是相似的为真命题.,
∴原命题为真命题,则命题的否定为假命题,
故答案为:存在两个等腰直角三角形,它们不相似 假

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.函数y=xln(x+$\sqrt{1+{x}^{2}}$),求dy.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xoy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,左顶点为A(-4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程; 
(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;
(3)若过O点作直线l的平行线交椭圆C于点M,求$\frac{AD+AE}{OM}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=aln$\frac{1}{x}$+x(a≠0).
(1)若a=1,求函数f(x)的单调区间与极值;
(2)在区间[1,e]上是否存在在一点x0,使得f(x0)<0成立,若存在求出实数a的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知F1,F2为椭圆$\frac{{x}^{2}}{2}$+y2=1的左、右焦点,A为下顶点,连接AF2并延长交椭圆于点B,则BF1长为$\frac{5\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若tan α<0,则(  )
A.sin α<0B.cos α<0C.sin α•cosα<0D.sin α-cos α<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.动圆M与圆C1:(x+1)2+y2=$\frac{1}{8}$外切,同时与圆C2:x2-2x+y2-$\frac{41}{8}$=0内切,不垂直于x轴的直线l交动圆圆心M的轨迹C于A,B两点
(1)求点M的轨迹C的方程
(2)若C与x轴正半轴交于A2,以AB为直径的圆过点A2,试问直线l是否过定点.若是,请求出该定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\left\{\begin{array}{l}1+lg(2-x),x<1\\{10^{x-1}},x≥1\end{array}$,则f(-98)+f(lg30)=(  )
A.5B.6C.9D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别为A1,A2,上顶点为B,从椭圆上一点P向x轴作垂线,垂足恰为左焦点F,且A2B∥OP,|FA2|=$\sqrt{10}$+$\sqrt{5}$,过A2作x轴的垂线l,点M是l上任意一点,A1M交椭圆于点N,则$\overrightarrow{OM}$•$\overrightarrow{ON}$=(  )
A.10B.5
C.15D.随点M在直线l上的位置变化而变化

查看答案和解析>>

同步练习册答案