精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=$\left\{\begin{array}{l}1+lg(2-x),x<1\\{10^{x-1}},x≥1\end{array}$,则f(-98)+f(lg30)=(  )
A.5B.6C.9D.22

分析 利用分段函数的性质及对数函数性质、运算法则和换底公式求解.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}1+lg(2-x),x<1\\{10^{x-1}},x≥1\end{array}$,
∴f(-98)=1+lg100=3,
f(lg30)=10lg30-1=$\frac{30}{10}$=3,
∴f(-98)+f(lg30)=3+3=6.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若sin(θ-$\frac{π}{6}$)=$\frac{3}{5}$,$\frac{π}{6}$<θ<$\frac{π}{2}$,则sinθ=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.写出命题p:”任意两个等腰直角三角形都是相似的”的否定?p:存在两个等腰直角三角形,它们不相似;判断?p是假命题.(后一空中填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=loga(2x2-x)(a>0,且a≠1)在区间($\frac{1}{2}$,1)内恒有f(x)>0,则函数f(x)的单调递增区间是(  )
A.(-∞,0)B.$({-∞,\frac{1}{4}})$C.$({\frac{1}{2},+∞})$D.$({\frac{1}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将边长为2正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个判断:
①AC⊥BD
②AB与平面BCD所成60°角      
③△ABC是等边三角形
④若A、B、C、D四点在同一个球面上,则该球的表面积为8π
其中正确判断的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性女性合计
反感10  
不反感 8 
合计  30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是$\frac{7}{15}$.
(I)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$)
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列命题:
①奇函数f(x)必满足f(0)=0;
②函数f(x)=loga(3x-2)+1的图象过定点(1,1)
③A=R+,B=R,$f:x→y=\frac{1}{x+1}$,则f为A到B的映射;
④在同一坐标系中,y=2x与y=-2-x的图象关于原点O对称.
其中真命题的序号是②③④(把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若角α终边经过点P(-3a,5a)(a≠0),则sinα的值为±$\frac{5\sqrt{34}}{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆x2+4y2=100的长轴长为20.

查看答案和解析>>

同步练习册答案