精英家教网 > 高中数学 > 题目详情
某象棋比赛规则如下:两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲、乙每局获胜的概率分别为
2
3
1
3
,且各局比赛胜负互不影响.
(1)求比赛进行4局结束,且乙比甲多得2分的概率;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望.
考点:离散型随机变量的期望与方差
专题:应用题,概率与统计
分析:(1)比赛进行4局结束,且乙比甲多得2分,即头两局乙胜一局,3、4局连胜,利用相互独立性概率公式,可得结论;
(2)随机变量ξ可能的取值为2,4,6,求出相应的概率,可得ξ的分布列和数学期望.
解答: 解:(1)比赛进行4局结束,且乙比甲多得2分,即头两局乙胜一局,3、4局连胜,
则所求概率为P=
C
1
2
1
3
2
3
1
3
1
3
=
4
81

(2)由题意,ξ的取值为2,4,6,则
P(ξ=2)=(
2
3
)2+(
1
3
)2
=
5
9
,P(ξ=4)=
C
1
2
1
3
2
3
•(
2
3
)2
+
C
1
2
1
3
2
3
•(
1
3
)2
=
20
81

P(ξ=6)=(
C
1
2
1
3
2
3
)2
=
16
81

∴ξ的分布列
 ξ  2  4  6
 P  
5
9
 
20
81
 
16
81
数学期望Eξ=2×
5
9
+4×
20
81
+6×
16
81
=
266
81
点评:本题考查概率知识,考查离散型随机变量的分布列与数学期望,确定变量的取值,正确求概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ<0,tanθ>0,则
1-sin2θ
cosθ
化简的结果为(  )
A、1B、-1
C、±1D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-1,2),
b
=(3,m),
a
∥(
a
+
b
),则m等于(  )
A、4B、3C、-4D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,且f′(x)-f(x)>0(其中f′(x)是f(x)的导函数)恒成立.若a=
f(ln3)
3
,b=
f(ln2)
2
,c=-ef(1),则a,b,c的大小关(  )
A、a>b>c
B、c>a>b
C、c>b>a
D、a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角△ABC的内角A,B,C的对边分别为a,b,c,且ccosB+
3
bsinC=a.
(1)求角C的大小;
(2)若c=1,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,又PA⊥底面ABCD,AB=2PA,E为BC的中点.
(1)求证:AD⊥PE;
(2)求平面APE与平面PCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:x2+7x-30≥0,q:x2-(2a+1)x+a2+a≥0,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B是抛物线C:y2=2px(p>0)上不同的两点,点D在抛物线C的准线l上,且焦点F到直线x-y+2=0的距离为
3
2
2

(Ⅰ)求抛物线C的方程;
(Ⅱ)现给出以下三个论断:①直线AB过焦点F;②直线AD过原点O;③直线BD平行x轴.请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知复数z在复平面内对应的点在第四象限,|z|=1,且z+
.
z
=1,求z;
(2)已知复数z=
5m2
1-2i
-(1+5i)m-3(2+i)为纯虚数,求实数m的值.

查看答案和解析>>

同步练习册答案