精英家教网 > 高中数学 > 题目详情
9.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为$\frac{4\sqrt{2}}{3}$,则该半球的体积为.(  )
A.$\frac{4\sqrt{2}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.$\frac{32\sqrt{2}}{3}$πD.$\frac{64\sqrt{2}}{3}$π

分析 设出球的半径,利用棱锥的体积公式,求解半径,然后求解半球的体积.

解答 解:设所给半球的半径为R,则棱锥的高h=R,底面正方形中有AB=BC=CD=DA=$\sqrt{2}$R,
所以其体积$\frac{2}{3}{R}^{3}$=$\frac{4\sqrt{2}}{3}$,则R3=2$\sqrt{2}$,于是球的体积为V=$\frac{4}{3}$πR3=$\frac{8\sqrt{2}}{3}$π.
则半球的体积为$\frac{1}{2}$V=$\frac{4\sqrt{2}}{3}π$.
故选:A.

点评 本题考查球的体积的体积的计算,确定球的半径关系式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知命题p;函数y=log2|x-a|在(1,+∞)上是增函数;命题q:函数y=2${\;}^{{x}^{2}+2ax+1}$在(0,+∞)上是增函数,若“p∧q”为假,“p∨q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果一扇形的圆心角为120°,半径等于 10cm,则扇形的面积为$\frac{100π}{3}$ cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=5,$\overrightarrow{b}$=(-3,4),若$\overrightarrow{a}$,$\overrightarrow{b}$方向相反,则$\overrightarrow{a}$的坐标形式为(3,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果关于x的方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数(  )
A.2B.1C.0D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,A、B、C的对边分别为 a、b、c,且a2=b2+c2+$\sqrt{3}$bc,则A=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线a,b的方向向量分别为$\overrightarrow{e}$=(1,-2,-2),$\overrightarrow{n}$=(-2,-3,2),则a与b的位置关系是(  )
A.平行B.重合C.垂直D.夹角等于$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x3-2x2-15x=0},集合B={x|x2+2ax+a2-$\frac{3}{2}a$=0}.
(1)若A∩B={-3},求a的值;
(2)若B⊆A时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=-(x-5)|x|的递减区间是(  )
A.(5,+∞)B.(-∞,0)C.(-∞,0)∪(5,+∞)D.(-∞,0),$(\frac{5}{2},+∞)$

查看答案和解析>>

同步练习册答案