精英家教网 > 高中数学 > 题目详情
5.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

分析 由已知求得$|\overrightarrow{a}|$及$\overrightarrow{a}•\overrightarrow{b}$,再求出$|\overrightarrow{a}-2\overrightarrow{b}{|}^{2}$得答案.

解答 解:由$\overrightarrow{a}$=(2,0),得$|\overrightarrow{a}|=2$,
又|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,
∴$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos120°=2×1×(-\frac{1}{2})=-1$,
∴|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}=\sqrt{4+4+4}=2\sqrt{3}$,
故选:B.

点评 本题考查平面向量的数量积运算,考查了计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数y=Asin(ωx+θ)+b的图象如图所示,则此函数的解析式为y=y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若抛物线y2=6x的准线被圆心为(-2,1)的圆截得的弦长等于$\sqrt{3}$,则该圆的半径为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设P(x,y)满足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,且P点到两直线x-2y=0,x+2y=0距离之和不大于$\sqrt{5}$,则x-y的最大值为(  )
A.$\frac{17}{3}$B.$\frac{15}{4}$C.$\frac{25}{4}$D.$\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭,如果函数f(x)=$\frac{kx}{1+{x}^{2}}$(k≠0)在R上封闭,那么实数k的取值范围是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合M={x|x2≤4},N={x|log2x≤1},则M∩N=(  )
A.[-2,2]B.{2}C.(0,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知?x0∈R使得关于x的不等式|x-1|-|x-2|≥t成立.
(Ⅰ)求满足条件的实数t集合T;
(Ⅱ)若m>1,n>1,且对于?t∈T,不等式log3m•log3n≥t恒成立,试求m+n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a=(2,-3),\overrightarrow b=(3,2)$,则$\overrightarrow a$与$\overrightarrow b$(  )
A.平行且同向B.垂直C.不垂直也不平行D.平行且反向

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{a}$=(-1,-2),$\overrightarrow{b}$=(m,m+1),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|等于(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{5}{9}$D.5

查看答案和解析>>

同步练习册答案