精英家教网 > 高中数学 > 题目详情
16.若抛物线y2=6x的准线被圆心为(-2,1)的圆截得的弦长等于$\sqrt{3}$,则该圆的半径为1.

分析 求出抛物线的准线方程,利用弦心距、半弦长求解圆的半径,即可.

解答 解:抛物线y2=6x的准线:x=-$\frac{3}{2}$,圆的圆心到准线的距离为:$\frac{1}{2}$,弦长为:$\sqrt{3}$,圆的半径为:r=$\sqrt{(\frac{\sqrt{3}}{2})^{2}+(\frac{1}{2})^{2}}$=1.
故答案为:1.

点评 本题考查直线与圆的方程的应用,抛物线的准线方程的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.满足nAn3>3An2且A8n+2<6A8n的正整数n的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面上的点O,A,B,C满足|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2,$\overrightarrow{AC}•\overrightarrow{BC}$=0,则|$\overrightarrow{OC}$|的最大值为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2上、下顶点分别是B1、B2,C是B1F2的中点,若$\overrightarrow{{B}_{1}{F}_{1}}$•$\overrightarrow{{B}_{1}{F}_{2}}$=2,且$\overrightarrow{C{F}_{1}}$⊥$\overrightarrow{{B}_{1}{F}_{2}}$.
(1)求椭圆的方程.
(2)点M,N是椭圆上的两个动点,过M,N两点的切线交于点P,若$\overrightarrow{PM}$•$\overrightarrow{PN}$=0时,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=$\frac{1}{5}$|F1F2|,则C的离心率为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.服从二项分布∮~B(n,p),则$\frac{{D}^{2}∮}{(E∮)^{2}}$=(1-p)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若5人站一排,且甲、乙之间至多有一个人,这样的站法有(  )种.
A.84B.60C.144D.76

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的中位数是83,乙班学生成绩的平均数是86,则x+y的值为(  )
A.168B.169C.8D.9

查看答案和解析>>

同步练习册答案