【题目】共享单车又称为小黄车,近年来逐渐走进了人们的生活,也成为减少空气污染,缓解城市交通压力的一种重要手段.为调查某地区居民对共享单车的使用情况,从该地区居民中按年龄用随机抽样的方式随机抽取了
人进行问卷调查,得到这
人对共享单车的评价得分统计填入茎叶图,如下所示(满分
分):
![]()
![]()
(1)找出居民问卷得分的众数和中位数;
(2)请计算这
位居民问卷的平均得分;
(3)若在成绩为
分的居民中随机抽取
人,求恰有
人成绩超过
分的概率.
科目:高中数学 来源: 题型:
【题目】已知四棱锥
的底面
是矩形,
底面
,且
,设E、F、G分别为PC、BC、CD的中点,H为EG的中点,如图.
![]()
(1)求证:
平面
;
(2)求直线FH与平面
所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为准备参加市运动会,对本校甲、乙两个田径队中
名跳高运动员进行了测试,并用茎叶图表示出本次测试
人的跳高成绩(单位:
).跳高成绩在
以上(包括
)定义为“合格”,成绩在
以下(不包括
)定义为“不合格”.鉴于乙队组队晚,跳高成绩相对较弱,为激励乙队队队,学校决定只有乙队中“合格”者才能参加市运动会开幕式旗林队.
![]()
(1)求甲队队员跳高成绩的中位数;
(2)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取
人,则
人中“合格”与“不合格”的人数各为多少;
(3)若从所有“合格”运动员中选取
名,用
表示所选运动员中能参加市运动会开幕式旗林队的人数,试求
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
满足“对任意正整数
,都存在正整数
,使得
”,则称数列
具有“性质
”.已知数列
为无穷数列.
(1)若
为等比数列,且
,判断数列
是否具有“性质
”,并说明理由;
(2)若
为等差数列,且公差
,求证:数列
不具有“性质
”;
(3)若等差数列
具有“性质
”,且
,求数列
的通项公式
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).设直线
与
的交点为
,当
变化时的点
的轨迹为曲线
.
(1)求出曲线
的普通方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,设射线
的极坐标方程为
且
,点
是射线
与曲线
的交点,求点
的极径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com