精英家教网 > 高中数学 > 题目详情
5.(1)函数$y=\left\{\begin{array}{l}2x,0≤x≤4\\ 8,4<x≤8\\ 2(12-x),8<x≤12\end{array}\right.$,编写出求函数的函数值的程序(使用嵌套式);
(2)“求$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{99×100}$的值.”写出用基本语句编写的程序(使用当型).

分析 (1)根据题目已知中分段函数的解析式,根据分类标准,设置两个选择语句的并设置出判断的条件,再由函数各段的解析式,确定判断条件的“是”与“否”分支对应的操作,由此即可编写满足题意的程序.
(2)这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.

解答 解:(1)INPUT“x=”;x
IF x>=0 and x<=4  THEN
y=2*x
ELSE IF x<=8   THEN
y=8
ELSE
y=2*(12-x)
END IF
END IF
PRINT y
END              …(6分)
(2).
S=0
K=1
DO
s=s+1/k(k+1)
k=k+1
LOOP UNTIL k>99
PRINT s
END                    …(12分)

点评 本题考查了设计程序框图解决实际问题,(1)主要考查编写程序解决分段函数问题.(2)主要考查利用循环结构进行累加.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足:$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+…+$\frac{n}{{a}_{n}}$=$\frac{3}{8}$(32n-1),n∈N*.若bn=log3$\frac{a_n}{n}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列图形:①角;②三角形;③平行四边形;④梯形;⑤四边形.其中表示平面图形的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面是关于复数z=$\frac{2}{1+i}$的四个命题:
p1:复数z的共轭复数为1+i;
p2:复数z的虚部为1;
p3:复数z对应的点在第四象限; 
p4:|z|=$\sqrt{2}$.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解方程组:$\left\{\begin{array}{l}{sinx+2cosx=\frac{\sqrt{10}}{2}}\\{si{n}^{2}x+co{s}^{2}x=1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,设a,b,c分别为角A,B,C的对边,已知acosB=bcosA,cosC=$\frac{3}{4}$.
(1)若a+c=2+$\sqrt{2}$,求△ABC的面积;
(2)设△ABC的周长为L,面积为S,求y=L-$\frac{4\sqrt{7}}{7}$S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(-1,3),B(5,7),直线l:3x+4y-20=0
(1)过点A且与直线l平行的直线方程;
(2)过点B且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,∠A为锐角,且AB=$\sqrt{2}$,AC=$\sqrt{6}$,S△ABC=$\frac{\sqrt{3}}{2}$,则BC=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;
(1)当$θ=\frac{π}{12}$时,求四边形ABCD的面积.
(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l最长,并求出l的最大值.

查看答案和解析>>

同步练习册答案