【题目】某学校随机抽取100名考生的某次考试成绩,按照[75,80),[80,85),[85,90),[90,95),[95,100](满分100分)分为5组,制成如图所示的频率分布直方图(假定每名学生的成绩均不低于75分).已知第3组,第4组,第5组的频数成等差数列;第1组,第5组,第4组的频率成等比数列.
(1)求频率分布直方图中a的值,并估计抽取的100名学生成绩的中位数和平均数(同一组中的数据用该组区间的中点值作代表);
(2)若从第3组、第4组、第5组中按分层抽样的方法抽取6人,并从中选出3人,求这3人中至少有1人来自第4组的概率.
【答案】(1) a=0.04,中位数.平均数87.25;(2).
【解析】
(1)根据频率之和为1,即可求出的值,再根据频率分布直方图求出平均数,中位数。(2)首先分别按比例从第3组、第4组、第5组中抽出3、2、1人,从6位同学中抽取3位同学有20种可能,找出3人中至少有1人来自第4组的情况。
(1)设第3组,第5组的频率分别为x,y,
由题意可得,
解得x=0.3,y=0.1,a=0.04,
∴()=87.25,
由频率分布直方图知,中位数在[85,90),设中位数为m,
则0.01×5+0.07×5+0.06×(m﹣85)=0.5,
解得中位数m.
(2)∵成绩较好的第3组、第4组、第5组中的人数分别为30,20,10,
∴按分层抽样的方法在各组抽取的人数分别为3,2,1,
设第3组的3位同学分别为A1,A2,A3,第4组的2位同学分别为B1,B2,第5组的1位同学为C,
则从6位同学中抽取3位同学有20种可能,分别为:
(),(A1,A2,B1),(A1,A2,B2),(A1,A2,C),(A1,A3,B1),(A1,A3,B2),(A1,A3,C),(A1,B1,B2),(A1,B1,C),(A1,B2,C),(A2,A3,B1),(A2,A3,B2),(A2,A3,C),(A2,B1,B2),(A2,B1,C),(A2,B2,C),(A3,B1,B2),(A3,B1,C),(A3,B2,C),(B1,B2,C),
这3人中至少有1人来自第4组包含的基本事件有16个,分别为:
(A1,A2,B1),(A1,A2,B2),(A1,A3,B1),(A1,A3,B2),(A1,B1,B2),(A1,B1,C),(A1,B2,C),(A2,A3,B1),(A2,A3,B2),(A2,B1,B2),(A2,B1,C),(A2,B2,C),(A3,B1,B2),(A3,B1,C),(A3,B2,C),(B1,B2,C),
∴这3人中至少有1人来自第4组的概率为P.
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:,且对任意,(s,k,l,)都有,则称数列为“T”数列.
(1)证明:正项无穷等差数列是“T”数列;
(2)记正项等比数列的前n项之和为,若数列是“T”数列,求数列公比的取值范围;
(3)若数列是“T”数列,且数列的前n项之和满足,求证:数列是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等腰梯形中(如图1),,,为线段的中点,、为线段上的点,,现将四边形沿折起(如图2)
(1)求证:平面;
(2)在图2中,若,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,、分别是椭圆长轴的左、右端点,为椭圆上的动点.
(1)求的最大值,并证明你的结论;
(2)设直线的斜率为,且,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线:(为参数,),曲线:(为参数),与相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求的极坐标方程及点的极坐标;
(2)已知直线:与圆:交于,两点,记的面积为,的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.
(1)求椭圆C的标准方程;
(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为圆上的动点,点在圆的半径上运动,点在上,且满足,其中.
(1)求点的轨迹方程;
(2)设不过原点的直线与点的轨迹交于两点,且点关于恒过定点的直线对称.求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com