分析 (Ⅰ)建立坐标系求出平面AFC的法向量,利用向量法即可证明:BE∥平面AFC;
(Ⅱ)求出平面的法向量,利用向量法即可求二面角F-AC-D的余弦值.
解答
解:(Ⅰ)以A为坐标原点,直线AD、AP分别为y轴、z轴,平面ABCD内过A点垂直AD的直线为x轴,
建立如图所示空间直角坐标系.
由题意知相关各点的坐标分别为A(0,0,0),B($\sqrt{3}$,-1,0),
C($\sqrt{3}$,1,0),D(0,2,0),P(0,0,3)…(2分)
由点E为PC的中点,点F在PD上,且PF=2FD得:
E($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\frac{3}{2}$),F(0,$\frac{4}{3}$,1)
所以 $\overrightarrow{AF}$=(0,$\frac{4}{3}$,1),$\overrightarrow{AC}$=($\sqrt{3}$,1,0),$\overrightarrow{BE}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,$\frac{3}{2}$),
设$\overrightarrow{n}$=(x,y,z)是平面AFC的法向量,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AF}=0}\\{\overrightarrow{n}•\overrightarrow{AC}=0}\end{array}\right.$,所以$\left\{\begin{array}{l}{\frac{4}{3}y+z=0}\\{\sqrt{3}x+y=0}\end{array}\right.$,
令y=1取得平面AFC的一个法向量为$\overrightarrow{n}$=(-$\frac{\sqrt{3}}{3}$,1,-$\frac{4}{3}$).…(5分)
由$\overrightarrow{n}•\overrightarrow{BE}$=(-$\frac{\sqrt{3}}{3}$,1,-$\frac{4}{3}$).(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,$\frac{3}{2}$)=$\frac{1}{2}$+$\frac{3}{2}$-2=0,
则$\overrightarrow{n}$⊥$\overrightarrow{BE}$
又BE?平面AFC,
所以BE∥平面AFC.…(8分)
(Ⅱ)由PA⊥平面ABCD知平面ACD的一个法向量为$\overrightarrow{m}$=(0,0,3),
因为cos<$\overrightarrow{n}$,$\overrightarrow{m}$>=$\frac{-4}{\sqrt{\frac{1}{3}+1+\frac{16}{9}}•\sqrt{9}}$=-$\frac{2\sqrt{7}}{7}$,
由题中条件可知二面角F-AC-D为锐角,所以它的余弦值为$\frac{2\sqrt{7}}{7}$.…(12分)
注:第一问用几何方法证明记(6分).其他解法相应记分.
点评 本题主要考查线面平行的判断以及二面角的求解,建立空间坐标系,求出平面的法向量,利用向量法是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com