精英家教网 > 高中数学 > 题目详情
15.cos225°的值等于(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-1D.1

分析 由条件利用诱导公式化简所给式子的值,可得结果.

解答 解:cos225°=cos(180°+45°)=-cos45°=-$\frac{\sqrt{2}}{2}$,
故选:A.

点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,AC=$\frac{1}{2}$AA1,D、E分别是棱AA1、CC1的中点.
(1)证明:AE∥平面BDC1
(2)证明:DC1⊥平面BDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,矩形ABCD的两条对角线相交于点M(3,5),AB边所在直线的方程为x-3y+8=0,点N(0,6)在AD边所在直线上.
(1)求AD边所在直线的方程;
(2)求对角线AC所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是各项均为正数的等差数列,首项a1=1,其前n项和为Sn,数列{bn}是等比数列,首项b1=2,且b2S2=16,b3S3=72.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk,其中k∈N*,求数列{cn}的前n(n≥3)项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若集合$A=\{x|y=\sqrt{x-1}\}$,B={y|y=2x,x∈A},求∁R(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的通项公式为an=pn+q,其中p、q为常数.
(1)求证:数列{an}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=(1,cosx),$\overrightarrow{b}$=($\frac{1}{5}$,sinx),x∈(0,π)
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\frac{sinx+cosx}{sinx-cosx}$的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求cosx-sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}为等比数列,且a2=2,a5=16.
(1)求数列{an}的通项公式;
(2)记bn=an•log2an+1,数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某商场搞促销活动,凡消费达到一定金额即可获得赠送的一定价值的小礼品,小礼品的价值由抽奖方式来确定.抽奖按如下方式进行:盒中有一等奖券1张、二等奖、三等奖的奖券各2张.顾客不放回地从盒中任抽2张(抽完后放回以供下位顾客抽取),根据奖券等次获得相应的小礼品,某顾客消费达到了规定金额并参加了抽奖活动.求:
(1)该顾客抽取的2张奖券都是三等奖的概率;
(2)该顾客抽取的2张奖券等次不同的概率.

查看答案和解析>>

同步练习册答案