精英家教网 > 高中数学 > 题目详情

已知长方体ABCD-A1B1C1D1中,AB=BC=2,A1D与BC1所成的角为数学公式,则BC1与平面BB1D1D所成角的正弦值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:根据已知中长方体ABCD-A1B1C1D1中,AB=BC=2,A1D与BC1所成角为90°,易判断这是一个棱长为2的正方体,设 O为B1D1的中点,证明C1O⊥平面 BB1D1D,得出∠C1BO为直线BC1与平面BB1D1D所成角,解三角形∠C1BO即可得到直线BC1与平面BB1D1D所成角的大小.
解答:因为在长方体ABCD-A1B1C1D1中,AB=BC=2
∴上下底面为正方形
又∵BC1∥AD1,A1D与BC1所形成的角为90°,
∴A1D与AD1所成的角为90°,
∴AA1D1D为正方形,
∴ABCD-A1B1C1D1为正方体
设 O为B1D1的中点,则由C1O⊥B1D1,C1O⊥B1B,
得出C1O⊥平面 BB1D1D
连接BO,则∠C1BO为直线BC1与平面BB1D1D所成角
∵BC1=2; C1O=
∴sin∠C1BO=
∠C1BO=30°
故选B.
点评:本题考查了直线与平面所成的角的概念与计算,考查空间想象能力、推理论证、计算能力.其中判断出棱柱为正方体且C1BO为直线BC1与平面BB1D1D所成角,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,点M是棱D1C1的中点.
(1)试用反证法证明直线AB1与BC1是异面直线;
(2)求直线AB1与平面DA1M所成的角(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,点E是B1C1的中点,点F在AB上,建立空间直角坐标系如图所示.
(1)求
AE
的坐标及长度;
(2)求点F的坐标,使直线DF与AE的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,M、N分别是BB1和BC的中点,AB=4,AD=2,BB1=2
15
,求异面直线B1D与MN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A1B1C1D1,AB=BC=1,BB1=2,连接B1C,过B点作B1C.
的垂线交CC1于E,交B1C于F.
(I)求证:A1C⊥平面EBD;
(Ⅱ)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是(  )
精英家教网
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步练习册答案