【题目】已知圆
关于直线
对称的圆为
.
(1)求圆
的方程;
(2)过点
作直线
与圆
交于
两点,
是坐标原点,是否存在这样的直线
,使得在平行四边形
中
?若存在,求出所有满足条件的直线
的方程;若不存在,请说明理由.
【答案】(1)
(2)存在直线
和![]()
【解析】试题分析:(1)将圆的一般方程转化为标准方程,将圆关于直线对称问题转化为点关于直线对称问题,进而求出圆的方程;(2)先由条件判定四边形
为矩形,将问题转化为判定两直线垂直,利用平面向量是数量积为0进行求解.
试题解析:(1)圆
化为标准为
,
设圆
的圆心
关于直线
的对称点为
,则
,
且
的中点
在直线
上,
所以有
,
解得:
,
所以圆
的方程为
.
(2)由
,所以四边形
为矩形,所以
.
要使
,必须使
,即:
.
①当直线
的斜率不存在时,可得直线
的方程为
,与圆![]()
交于两点
,
.
因为
,所以
,所以当直线
的斜率不存在时,直线
满足条件.
②当直线
的斜率存在时,可设直线
的方程为
.
设![]()
由
得:
.由于点
在圆
内部,所以
恒成立,
,
,
,
要使
,必须使
,即
,
也就是: ![]()
整理得: ![]()
解得:
,所以直线
的方程为![]()
存在直线
和
,它们与圆
交
两点,且四边形
对角线相等.
科目:高中数学 来源: 题型:
【题目】已知双曲线
:
的左、右焦点分别为
,
为坐标原点,
是双曲线上在第一象限内的点,直线
分别交双曲线
左、右支于另一点
,
,且
,则双曲线
的离心率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
.
(1)若函数
,
的最小值为-16,求实数
的值;
(2)若函数
在区间
上是单调减函数,求实数
的取值范围;
(3)当
时,不等式
的解集为
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017届高三第二次湖北八校文数试卷第16题)祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆
所围成的平面图形绕
轴旋转一周后,得一橄榄状的几何体
(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于______ .
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是椭圆C:
上一点,点P到椭圆C的两个焦点的距离之和为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A,B是椭圆C上异于点P的两点,直线PA与直线
交于点M,
是否存在点A,使得
?若存在,求出点A的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某知名品牌汽车深受消费者喜爱,但价格昂贵。某汽车经销商退出
三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图。已知从
三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元,2万元,3万元。现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆。以这100 位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率。
![]()
(Ⅰ)求甲乙两人采用不同分期付款方式的概率;
(Ⅱ)记
(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求
的分布列和期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
,
,
是棱
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成的二面角的余弦值;
(Ⅲ)设点
是直线
上的动点,
与平面
所成的角为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如图频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]).
(1)求成绩在[70,80)的频率和[70,80)这组在频率分布直方图中的纵坐标a的值;
(2)求这次考试平均分的估计值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com