【题目】设函数,其中.
(1)讨论的单调性;
(2)若在区间内恒成立,求的取值范围.
科目:高中数学 来源: 题型:
【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.
(1)求函数的解析式;
(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆: 的左、右焦点分别为,上顶点为,过与垂直的直线交轴负半轴于点,且恰好是线段的中点.
(1)若过三点的圆恰好与直线相切,求椭圆的方程;
(2)在(1)的条件下, 是椭圆的左顶点,过点作与轴不重合的直线交椭圆于两点,直线分别交直线于两点,若直线的斜率分别为,试问: 是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利用随机模拟方法计算y=x2与y=4围成的面积时,利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换,a=4a1-2,b=4b1,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数a1=0.3,b1=0.8及a1=0.4,b1=0.3,那么本次模拟得出的面积的近似值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若f(1)=0,求函数f(x)的最大值;
(Ⅱ)令,讨论函数g(x)的单调区间;
(Ⅲ)若a=2,正实数x1,x2满足证明
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数/ (为常数)的图像与轴交于点,曲线在点处的切线斜率为 .
(1)求的值及函数的极值;
(2)证明:当时, ;
(3)证明:对任意给定的正数,总存在,使得当,恒有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆关于直线对称的圆为.
(1)求圆的方程;
(2)过点作直线与圆交于两点, 是坐标原点,是否存在这样的直线,使得在平行四边形中?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴,与直角坐标系取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)化曲线的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线与轴的一个交点的坐标为,经过点作斜率为1的直线,直线交曲线于两点,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别是a,b,c已知ccosB+(b-2a)cosC=0
(1)求角C的大小
(2)若c=2,a+b=ab,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com