精英家教网 > 高中数学 > 题目详情
12.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若sin∠ABC=$\frac{2\sqrt{5}}{5}$,PA=10.
(Ⅰ)求PB的长;
(Ⅱ)求AD•DE的值.

分析 (Ⅰ)通过证明△ABP∽△CAP,然后证明AC=2AB;
(Ⅱ)利用切割线定理以及相交弦定理直接求AD•DE的值.

解答 解:(Ⅰ)∵PA是圆O的切线,∴∠PAB=∠ACB,
又∠P是公共角
∴△ABP∽△CAP
∴$\frac{AC}{AB}=\frac{AP}{PB}$,
∵△ABC内接于直径为BC的圆O,sin∠ABC=$\frac{2\sqrt{5}}{5}$,∴$\frac{AC}{AB}$=2,
∵PA=10,
∴PB=5;
(Ⅱ)由切割线定理得:PA2=PB•PC∴PC=20
又PB=5,∴BC=15
又∵AD是∠BAC的平分线,∴$\frac{AC}{AB}$=$\frac{CD}{DB}$=2
∴CD=2DB,∴CD=10,DB=5
又由相交弦定理得:AD•DE=CD•DB=50.

点评 本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.定义域为R的函数f(x)满足f(x+2)=2f(x)-2,当x∈(0,2]时,f(x)=$\left\{\begin{array}{l}{x^2}-x\;\;,\;\;x∈({0,1})\\ \frac{1}{x}\;,\;\;\;\;x∈[{1,2}]\end{array}$,若x∈(0,4]时,t2-$\frac{7t}{2}$≤f(x)≤3-t恒成立,则实数t的取值范围是(  )
A.[2,+∞)B.$(1,\frac{5}{2})$C.$(2,\frac{5}{2})$D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c均为直线,α,β为平面.下面关于直线与平面关系的命题:
(1)任意给定一条直线a与一个平面α,则平面α内必存在与a垂直的直线;
(2)任意给定的三条直线a,b,c,必存在与a,b,c都相交的直线;
(3)α∥β,a?α,b?β,必存在与a,b都垂直的直线;
(4)α⊥β,α∩β=c,a?α,b?β,若a不垂直c,则a不垂直b.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$所有数的和等于36,那么a22=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知两条不重合的直线m、n,两个不重合的平面α、β,有下列四个命题:
①若m∥n,m?α,则n∥α;
②若n⊥α,m⊥β且m∥n则α∥β;
③若m?α,n?α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,且n?β,n⊥m,则n⊥α.
其中正确命题为(  )
A.①②B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}{y≥0}\\{x+3y≤3}\\{3x+y≥3}\end{array}\right.$,则z=8x-4y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将直角边长为1的等腰直角△ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:
①f(x)的值域为[0,$\sqrt{2}$];
②f(x)是周期函数且周期为1+$\sqrt{2}$;
③f(x)的一个减区间是[$\sqrt{2}$,$\sqrt{2}$+2];
④${∫}_{0}^{\sqrt{2}+1}$f(x)dx=$\frac{3π}{4}$+$\frac{1}{2}$;
⑤f(1)<f($\sqrt{2}$+1)<f(100+51$\sqrt{2}$).
其中正确命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x|x-a|+b,a,b∈R
(Ⅰ)当a>0时,讨论函数f(x)的零点个数;
(Ⅱ)若对于给定的实数a(-1<a<0),存在实数b,使不等式x-$\frac{1}{2}≤f(x)≤x+\frac{1}{2}$对于任意x∈[2a-1,2a+1]恒成立.试将最大实数b表示为关于a的函数m(a),并求m(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在“中国好声音”的一场海选中,有5位歌手参与评选,有3位导师参与挑选歌手,被导师选中的歌手将归入相应的导师一组,如果一位歌手同时被多位导师选中,则由歌手自己确定归入哪个导师组,如果3位导师都没有选中某位歌手,则该歌手被淘汰,若限定一位导师最多选中3位歌手,那么本场海选结束后,这5位歌手所有可能的结果有210种.

查看答案和解析>>

同步练习册答案