精英家教网 > 高中数学 > 题目详情
20.如图所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$所有数的和等于36,那么a22=(  )
A.8B.4C.2D.1

分析 通过等差数列的等差中项的性质可将每行用中间的数表示、第二列也用中间的数表示,计算即可.

解答 解:根据题意,得
2a12=a11+a13
2a22=a12+a32=a21+a23
2a32=a31+a33
∵数阵中$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$所有数的和为36,
∴3a12+3a22+3a32=3a22+3(a12+a32
=9a22
=36,
即a22=4,
故选:B.

点评 本题考查等差数列的基本性质,每行的和用中间的数表示是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:
时间周一周二周三周四周五
车流量x(万辆)5051545758
PM2.5的浓度y(微克/立方米)6970747879
(1)根据表数据,请在下列坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,过圆外一点P作圆的两条割线,分别交圆于点A,B,C,D,PA=2,AB=4,CD=1,且圆心O恰在BC上,则该圆的半径长为$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A={(x,y)||x+1|≤y≤2},B={(x,y)|x+2y-a=0},若A∩B≠∅,则实数a的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图A,B,C是球面上三点,且OA,OB,OC两两垂直,若P是球O的大圆所在弧BC的中点,则直线AP与BC的位置关系是异面、垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{lnx+1}{{e}^{x}}$(e是自然对数的底数),h(x)=1-x-xlnx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求h(x)的最大值;
(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若sin∠ABC=$\frac{2\sqrt{5}}{5}$,PA=10.
(Ⅰ)求PB的长;
(Ⅱ)求AD•DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数x,y满足$\left\{\begin{array}{l}{y≥|x-1|}\\{y≤1}\end{array}\right.$则不等式组所围成的图形的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,若该几何体的各顶点都在同一个球面上,则该几何体的侧视图的面积为  (  )
A.4+$\sqrt{2}$B.4+$\sqrt{3}$C.3+$\sqrt{2}$D.3+$\sqrt{3}$

查看答案和解析>>

同步练习册答案