10£®PM2.5ÊÇÖ¸¿ÕÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³Æ¿ÉÈë·Î¿ÅÁ£Î£®ÎªÁË̽¾¿³µÁ÷Á¿ÓëPM2.5µÄŨ¶ÈÊÇ·ñÏà¹Ø£¬Ïֲɼ¯µ½Ä³³ÇÊÐÖÜÒ»ÖÁÖÜÎåijһʱ¼ä¶Î³µÁ÷Á¿ÓëPM2.5µÄÊý¾ÝÈç±í£º
ʱ¼äÖÜÒ»ÖܶþÖÜÈýÖÜËÄÖÜÎå
³µÁ÷Á¿x£¨ÍòÁ¾£©5051545758
PM2.5µÄŨ¶Èy£¨Î¢¿Ë/Á¢·½Ã×£©6970747879
£¨1£©¸ù¾Ý±íÊý¾Ý£¬ÇëÔÚÏÂÁÐ×ø±êϵÖл­³öÉ¢µãͼ£»
£¨2£©¸ù¾ÝÉϱíÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$£»
£¨3£©ÈôÖÜÁùͬһʱ¼ä¶Î³µÁ÷Á¿ÊÇ25ÍòÁ¾£¬ÊÔ¸ù¾Ý£¨2£©Çó³öµÄÏßÐԻع鷽³ÌÔ¤²â£¬´ËʱPM2.5µÄŨ¶ÈΪ¶àÉÙ£¨±£ÁôÕûÊý£©£¿

·ÖÎö £¨1£©ÀûÓÃÃèµã·¨¿ÉµÃÊý¾ÝµÄÉ¢µãͼ£»
£¨2£©¸ù¾Ý¹«Ê½Çó³öb£¬a£¬¿Éд³öÏßÐԻع鷽³Ì£»
£¨3£©¸ù¾Ý£¨2£©µÄÐԻع鷽³Ì£¬´úÈëx=25Çó³öPM2.5µÄŨ¶È£®

½â´ð ½â£º£¨1£©É¢µãͼÈçͼËùʾ£®¡­£¨2·Ö£©
£¨2£©¡ß$\overline x=\frac{50+51+54+57+58}{5}=54$£¬$\overline y=\frac{69+70+74+78+79}{5}=74$£¬¡­£¨6·Ö£©$\sum_{i=1}^5{£¨{x_i}-\overline x}£©£¨{y_i}-\overline y£©=4¡Á5+3¡Á4+3¡Á4+4¡Á5=64$£¬$\sum_{i=1}^5{£¨{x_i}}-\overline x{£©^2}={£¨-4£©^2}+{£¨-3£©^2}+{3^2}+{4^2}=50$£¬$\widehatb=\frac{{\sum_{i=1}^5{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^5{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{64}{50}=1.28$£¬$\widehata=\overline y-b\overline x=74-1.28¡Á54=4.88$£¬¡­£¨9·Ö£©
¹Êy¹ØÓÚxµÄÏßÐԻع鷽³ÌÊÇ£º$\hat y=1.28x+4.88$£®¡­£¨10·Ö£©
£¨3£©µ±x=25ʱ£¬y=1.28¡Á25+4.88=36.88¡Ö37ËùÒÔ¿ÉÒÔÔ¤²â´ËʱPM2.5µÄŨ¶ÈԼΪ37£®¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏßÐԻعé·ÖÎöµÄ·½·¨£¬°üÀ¨É¢µãͼ£¬ÓÃ×îС¶þ³Ë·¨Çó²ÎÊý£¬ÒÔ¼°Óûع鷽³Ì½øÐÐÔ¤²âµÈ֪ʶ£¬¿¼²éÁË¿¼ÉúÊý¾Ý´¦ÀíºÍÔËËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýg£¨x£©=$\frac{1}{6}$x3+$\frac{a+1}{2}$x2+mx+2µÄµ¼º¯Êýg¡ä£¨x£©µÄͼÏó¾­¹ýµã£¨0£¬1£©£¬ÇÒf£¨x£©=g¡ä£¨x£©+alnx£®
£¨1£©ÇómµÄÖµ£»
£¨2£©µ±a=-1ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨3£©Èôº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª£ºµ±x£¾0ʱ£¬²»µÈʽ$\frac{1}{1+x}$¡Ýkx+bºã³ÉÁ¢£¬µ±ÇÒ½öµ±x=$\frac{1}{3}$ʱȡµÈºÅ£¬Ôòk=-$\frac{9}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚ¡÷ABCÖУ¬¡ÏABC=$\frac{¦Ð}{6}$£¬AB=$\sqrt{3}$£¬BC=3£¬ÈôÔÚÏß¶ÎBCÉÏÈÎȡһµãD£¬Ôò¡ÏBADΪÈñ½ÇµÄ¸ÅÂÊÊÇ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖÐa3=7£¬ÆäǰnÏîºÍSn=pn2+2n£¬n¡ÊN*£®
£¨¢ñ£©ÇópµÄÖµ¼°an£»
£¨¢ò£©ÔڵȱÈÊýÁÐ{bn}ÖУ¬b3=a1£¬b6=4a10-3£¬ÈôµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪTn£®ÇóÖ¤£ºÊýÁÐ{Tn+$\frac{1}{6}$}ΪµÈ±ÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÑÓ³¤¡÷ABCµÄ½Çƽ·ÖÏßAD½»ÆäÍâ½ÓÔ²ÓÚE£¬ÈôAD=AB=1£¬DE=$\sqrt{2}$£¬ÔòAC=$\sqrt{2}+1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×ãf£¨x+2£©=2f£¨x£©-2£¬µ±x¡Ê£¨0£¬2]ʱ£¬f£¨x£©=$\left\{\begin{array}{l}{x^2}-x\;\;£¬\;\;x¡Ê£¨{0£¬1}£©\\ \frac{1}{x}\;£¬\;\;\;\;x¡Ê[{1£¬2}]\end{array}$£¬Èôx¡Ê£¨0£¬4]ʱ£¬t2-$\frac{7t}{2}$¡Üf£¨x£©¡Ü3-tºã³ÉÁ¢£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[2£¬+¡Þ£©B£®$£¨1£¬\frac{5}{2}£©$C£®$£¨2£¬\frac{5}{2}£©$D£®[1£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éèl£¬m£¬n±íʾ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦Ã±íʾ²»Í¬µÄÆ½Ãæ£¬¸ø³öÏÂÁÐËĸöÃüÌ⣬ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÈôm¡Îl£¬ÇÒm¡Í¦Á£¬Ôòl¡Í¦Á£»
¢ÚÈôm¡Îl£¬ÇÒm¡Î¦Á£¬Ôòl¡Î¦Á£»
¢ÛÈô¦Á¡É¦Â=l£¬¦Â¡É¦Ã=m£¬¦Ã¡É¦Á=n£¬Ôòl¡Îm¡În£»
¢ÜÈô¦Á¡É¦Â=m£¬¦Â¡É¦Ã=l£¬¦Ã¡É¦Á=n£¬ÇÒn¡Î¦Â£¬Ôòl¡Îm£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈçͼËùʾµÄÊýÕóÖУ¬Ã¿ÐС¢Ã¿ÁеÄÈý¸öÊý¾ù³ÉµÈ²îÊýÁУ¬Èç¹ûÊýÕóÖÐ$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array}£©$ËùÓÐÊýµÄºÍµÈÓÚ36£¬ÄÇôa22=£¨¡¡¡¡£©
A£®8B£®4C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸