精英家教网 > 高中数学 > 题目详情
5.已知函数g(x)=$\frac{1}{6}$x3+$\frac{a+1}{2}$x2+mx+2的导函数g′(x)的图象经过点(0,1),且f(x)=g′(x)+alnx.
(1)求m的值;
(2)当a=-1时,求函数f(x)的单调区间;
(3)若函数f(x)在(0,+∞)上是增函数,求实数a的取值范围.

分析 (1)求解g′(x)=$\frac{1}{2}$x2+(a+1)x+m,利用二次函数求解得出m的值,
(2)根据题意得出f(x)=$\frac{1}{2}{x}^{2}$+2x+1+lnx.′f(x)=x+2$+\frac{1}{x}$,x>0,配方得出f′(x)=$\frac{(x+1)^{2}}{x}$,x>0,利用导数与单调性的关系判断即可.
(3)得出f(x)=$\frac{1}{2}$x2+(a+1)x+1+alnx,′f(x)=x+(a+1)$+\frac{1}{x}$,x>0,分类讨论,利用基本不等式求解得出,即可得出答案.

解答 解:(1)g(x)=$\frac{1}{6}$x3+$\frac{a+1}{2}$x2+mx+2,
g′(x)=$\frac{1}{2}$x2+(a+1)x+m,
∵g′(x)的图象经过点(0,1),
∴g′(0)=1,
即m=1,
(2)当a=-1时,f(x)=g′(x)+alnx.
g(x)=$\frac{1}{6}$x3+x+2的
g′(x)=$\frac{1}{2}{x}^{2}$+1,
f(x)=$\frac{1}{2}{x}^{2}$+1-lnx.
∴f′(x)=x-$\frac{1}{x}$,x>0,
∵f′(x)=$\frac{{x}^{2}-1}{x}$,x>0,
当x>1时,f′(x)>0,
当0<x<1时,f′(x)<0,
当x=1时,f′(x)=0,
∴f(x)在(1,+∞)单调递增.
f(x)在(0,1)单调递减.
(3)f(x)=$\frac{1}{2}$x2+(a+1)x+1+alnx,
∴′f(x)=x+(a+1)+$\frac{a}{x}$,x>0,
∵函数f(x)在(0,+∞)上是增函数,
∴x$+\frac{a}{x}$+(a+1)≥0,
i)当a=0时,在(0,+∞)上有x+1>0,恒成立,
ii)当a>0时
∵x$+\frac{a}{x}$≥2$\sqrt{a}$,
∴2$\sqrt{a}$+a+1≥0,
即($\sqrt{a}$+1)2>0,x$+\frac{a}{x}$+(a+1)≥0在(0,+∞)上显然成立,
iii)∵当a<0时,y=x+$\frac{a}{x}$在(0,+∞)上是增函数,
∴x$+\frac{a}{x}$+(a+1)≥0,在(0,+∞)上不可能恒成立
实数a的取值范围:[0,+∞)

点评 本题综合考察了函数的性质,导数在求解单调性中的应用,构造函数,转化为基本不等式求解,综合性强,属于导数与函数结合的常见的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.阅读如图的程序框图,当该程序运行后输出的x值是(  )
A.2B.-5C.-$\frac{1}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PC⊥底面ABCD.底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E是线段PB的中点.
(Ⅰ)证明:AC⊥平面PBC;
(Ⅱ)若点P到平面ACE的距离是$\frac{{\sqrt{6}}}{3}$,求三棱锥P-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知n为正偶数,且${({x^2}-\frac{1}{2x})^n}$的展开式中第3项的二项式系数最大,则第3项的系数是$\frac{3}{2}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-5≤0}\\{x-2y+1≤0}\\{x-1≥0}\end{array}\right.$,则$\frac{y}{x}$的最小值是(  )
A.1B.4C.$\frac{2}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥S-ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D,E分别是AC,BC的中点,F在SE上,且SF=2FE.
(1)求证:AF⊥平面SBC;
(2)在线段上DE上是否存在点G,使二面角G-AF-E的大小为30°?若存在,求出DG的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,且满足AB∥CD,AD=DC=$\frac{1}{2}$AB,PA⊥平面ABCD.
(Ⅰ)求证:平面PBD⊥平面PAD;
(Ⅱ)若PA=AB,求直线PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=xlnx,g(x)=ax3-$\frac{1}{2}$x-$\frac{2}{3e}$,记函数f(x)与g(x)的交点坐标为(x0,f(x0)),若两函数的图象在交点(x0,f(x0))处存在公切线,则实数a的值为(  )
A.$\frac{2}{3e}$B.$\frac{{e}^{2}}{6}$C.$\frac{{e}^{2}}{2}$D.$\frac{3e}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:
时间周一周二周三周四周五
车流量x(万辆)5051545758
PM2.5的浓度y(微克/立方米)6970747879
(1)根据表数据,请在下列坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?

查看答案和解析>>

同步练习册答案