精英家教网 > 高中数学 > 题目详情
8.已知A={(x,y)||x+1|≤y≤2},B={(x,y)|x+2y-a=0},若A∩B≠∅,则实数a的最大值为5.

分析 集合A中不等式变形后,在平面直角坐标系画出图形,根据图形得出目标函数a=x+2y表示的平行直线系经过可行域上的点A(1,2)时,a取得最大值,求出a最大值即可.

解答 解:由A中不等式变形得:$\left\{\begin{array}{l}{|x+1|≤2}\\{y≤2}\\{|x+1|≤y}\end{array}\right.$,整理得:$\left\{\begin{array}{l}{-3≤x≤1}\\{y≤2}\\{y≥|x+1|}\end{array}\right.$,
集合A={(x,y)||x+1|≤y≤2}的元素(x,y)是如右图所示的阴影部分,
∵A∩B≠∅,
∴目标函数a=x+2y表示的平行直线系经过可行域上的点A(1,2)时,a取最大值为1+2×2=5.
故答案为:5

点评 此题考查了交集及其运算,利用了数形结合的思想,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,∠ABC=$\frac{π}{6}$,AB=$\sqrt{3}$,BC=3,若在线段BC上任取一点D,则∠BAD为锐角的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题,其中正确命题的个数为(  )
①若m∥l,且m⊥α,则l⊥α;
②若m∥l,且m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=cos(2x-$\frac{π}{4}$)在区间[0,$\frac{π}{2}$]上的最小值为(  )
A.-1B.-$\frac{\sqrt{2}}{2}$C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c均为直线,α,β为平面.下面关于直线与平面关系的命题:
(1)任意给定一条直线a与一个平面α,则平面α内必存在与a垂直的直线;
(2)任意给定的三条直线a,b,c,必存在与a,b,c都相交的直线;
(3)α∥β,a?α,b?β,必存在与a,b都垂直的直线;
(4)α⊥β,α∩β=c,a?α,b?β,若a不垂直c,则a不垂直b.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,Sn=n2an-2n(n-1)(n∈N*).
(I)证明数列{$\frac{n+1}{n}$Sn}是等差数列;
(Ⅱ)若bn=$\frac{1}{{n}^{2}(2n-1)}$Sn,数列{bn}的前n项和为Tn;.求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$所有数的和等于36,那么a22=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}{y≥0}\\{x+3y≤3}\\{3x+y≥3}\end{array}\right.$,则z=8x-4y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\frac{a+i}{1+i}-\frac{1}{2}$=b(1+i)(其中i为虚数单位,a,b∈R),则a等于(  )
A.-2B.2C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案