精英家教网 > 高中数学 > 题目详情
已知f(x)=-
x3
3
+x2-3x+
1
3
-cosx,x∈(-∞,3]
,若f(m2-sinx)≤f(m+1+cos2x)对x∈R恒成立,实数m的取值范围是______
∵f′(x)=-x2+2x-3+sinx=-(x-1)2-2+sinx<0
故函数在定义域上是减函数.
∴,f(m2-sinx)≤f(m+1+cos2x)对x∈R恒成立,可转化为m2-sinx≥m+1+cos2x
即m2-m≥2-sin2x+sinx对x∈R恒成立,
即m2-m≥-(sinx-
1
2
2+
9
4
恒成立
∴m2-m≥
9
4
,解得m≥
1+
10
2
,或m≤
1-
10
2

又m2-sinx≤3,m2≤3+sinx,m2≤2,|m|≤
2

m+1+cos2x≤3,m≤2-cos2x,即m≤1      ③
综①②③得-
2
≤m≤
1-
10
2

故应填-
2
≤m≤
1-
10
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+
3x
,求函数f(x)的单调区间及其极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+
1
2
mx2-2m2x-4
(m为常数,且m>0)有极大值-
5
2

(Ⅰ)求m的值;
(Ⅱ)求曲线y=f(x)的斜率为2的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1与x=-
23
时都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-1,2],都有f(x)-c2<0成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=
x+3
x2+3
的导数
(2)已知f(x)=x3+4cosx-sin
π
2
,求f'(x)及f′(
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x3+ax2-4
 (a∈R)
,f′(x)是f(x)的导函数.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a=2时,对任意的m∈[-1,1],n∈[-1,1],求f(m)+f'(n)的最小值;
(3)若?x0∈(0,+∞),使f(x)>0,求a取值范围.

查看答案和解析>>

同步练习册答案