精英家教网 > 高中数学 > 题目详情

【题目】已知

1)判断函数的奇偶性,并予以证明;

2时求使的取值范围.

【答案】(1)函数f(x)是奇函数(2)(0,1)

【解析】试题分析:(1)先求出函数的定义域为(-1,1),对任意,求出,由此得到函数是奇函数.

(2)由, ,得,由此利用对数函数性质能求出不等式的解集.

试题解析:1)由,可得-1<x<1,函数f(x)的定义域为(-1,1)关于原点对称 f-x=loga1-x-loga1+x=-fx),

函数f(x)是奇函数;

(2)f(x)>0,即loga(1+x)-loga(1-x)>0,

, a>1,等价于,等价于1+x>1-x,又等价于x>0.

故对a>1,当x(0,1)时有f(x)>0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近来景德镇市棚户区改造进行的如火如荼,加上城市人居环境的不断改善,我市房地产住宅销售价格节节攀升,一部分刚需住户带来了不小的烦恼,下表为我市2017.1﹣2017.5这5月住宅价格与月份的关系.

月份x

1

2

3

4

5

住宅价格y
千元/平米

4.8

5.4

6.2

6.6

7


(1)通过计算线性相关系数判断住宅价y千元/平米与月份x的线性相关程度(精确到0.01)
(2)用最小二乘法得到的线性回归直线去近似拟合x,y的关系. ①求y关于x的回归方程;②试估计按照这个趋势下去,将在不久的哪个年月份,房价将突破万元/平米的大关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(甲),在直角梯形 分别为的中点现将沿折起使平面平面如图(乙).

(1)求证:平面平面

(2)若求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1过点A(0,1),l2过点B(5,0),如果l1l2,且l1与l2的距离为5,求l1、l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+3)﹣1(a>0且a≠1)的图象恒过定点A,若点A在mx+ny+2=0上,其中mn>0,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面是边长为1的正方形,侧棱底面,且 是侧棱上的动点.

(1)求四棱锥的表面积;

(2)是否在棱上存在一点,使得平面;若存在,指出点的位置,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口水的深度是时间,单位: 的函数,记作.下面是某日水深的数据:

经长期观察, 的曲线可以近似地看成函数的图象.一般情况下,船舶航行时,船底离海底的距离为以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).

(1)求满足的函数关系式;

(2)某船吃水程度(船底离水面的距离)为,如果该船希望在同一天内安全进出港,请问它同一天内最多能在港内停留多少小时?(忽略进出港所需的时间).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=(m2+5m﹣6)+(m2﹣2m﹣15)i,(i为虚数单位,m∈R)
(1)若复数Z在复平面内对应的点位于第一、三象限的角平分线上,求实数M的值;
(2)当实数m=﹣1时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查大学生这个微信用户群体中每人拥有微信群的数量,现从武汉市大学生中随机抽取100位同学进行了抽样调查,结果如下:

微信群数量

频数

频率

0至5个

0

0

6至10个

30

0.3

11至15个

30

0.3

16至20个

a

c

20个以上

5

b

合计

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)以这100个人的样本数据估计武汉市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案