精英家教网 > 高中数学 > 题目详情
已知平面α与△ABC的两边AB,AC分别交于D,E,且AD:DB=AE:EC,求证:BC∥平面α.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:连接DE,根据线段的比例关系推断出DE∥BC,进而根据线面平行的判定定理证明出BC∥平面α.
解答: 证明:连接DE,
∵AD:DB=AE:EC,
∴DE∥BC,
∵DE?平面α,BC?平面α,
∴BC∥平面α.
点评:本题主要考查了线面平行的判定定理的应用.证明的关键是找到线线平行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知图中一组函数图象,它们分别与其后所列的一个现实情境相匹配:

情境A:一份30分钟前从冰箱里取出来,然后被防到微波炉里加热,最后放到餐桌上的食物的温度(将0时刻确定为食物从冰箱里被取出来的那一刻)
情境B:一个1970年生产的留声机从它刚开始的售价到现在的价值(它被一个爱好者收藏,并且被保存的很好);
情境C:从你刚开始放水洗澡,到你洗完后把它排掉这段时间浴缸里水的高度;
情境D:根据乘客人数,每辆公交车一趟营运的利润.
其中与情境A、B、C、D对应的图象正确的序号是(  )
A、①②③④B、②①③④
C、①②④③D、①③④②

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求函数f(x)的最小正周期;
(2)若a,b,c分别为△ABC的三个内角A,B,C对应的边长,f(
A
2
)=3,且a=2
3
,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:P为△ABC内一点,满足
PA
+
PB
+
PC
=
0
,且
PA
PB
的夹角等于135°,
PB
PC
的夹角等于120°,若|
PC
|=4.
(1)求|
PA
|;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若随机变量X的概率分布密度函数是φμ,δ(x)=
1
2
e -
(x+2)2
8
 (x∈R),则E(2X-1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DE的中点.
(Ⅰ)求证:BE∥平面ACF;
(Ⅱ)求二面角C-BF-E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x+
1
x
的值域为[-2.5,-2],求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有4人去旅游,旅游地点有A、B两个地方可以选择.但4人都不知道去哪里玩,于是决定通过掷一枚质地均匀的骰子决定自己去哪里玩,掷出能被3整除的数时去A地,掷出其他的数则去B地;
(1)求这4个人中恰好有1个人去A地的概率;
(2)求这4个人中去A地的人数大于去B地的人数的概率;
(3)用X,Y分别表示这4个人中去A、B两地的人数,记ξ=|X•Y|.求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E、F分别是CC1,BC的中点.
(1)求证:平面AB1F⊥平面AEF;
(2)求二面角B1-AE-F的余弦值.

查看答案和解析>>

同步练习册答案