精英家教网 > 高中数学 > 题目详情
7.过点(1,-$\sqrt{3}$)的直线l与y轴的正半轴没有公共点,求直线l的倾斜角α的范围.

分析 画出满足条件的特殊直线,求出其倾斜角,从而求出倾斜角的范围即可.

解答 解:如图示:

显然直线的斜率是非正数,
直线过OA时,斜率是-$\sqrt{3}$,倾斜角是120°,
结合图象120°≤α<180°或0°≤α≤90°.

点评 本题考查了求直线的倾斜角问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在H0成立的条件下,若P(K2≥2.072)=0.15,则表示把结论“H0成立”错判成“H0不成立”的概率不会超过0.15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx十$\frac{2a}{x+1}$(a∈R).
(Ⅰ)若函数f(x)存在极大值,试求a的取值范围;
(Ⅱ)当a为何值时,对任意的x>0,且x≠1,均有$\frac{lnx}{x-1}-\frac{a}{x+1}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,Sn=n2an
(1)分别计算a2,a3,a4,猜想通项公式an,并用数学归纳法证明之;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$).
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)求证:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知0<α<$\frac{π}{2}$,tanα=$\frac{4}{3}$,tan(α-β)=-$\frac{1}{3}$,则tanβ=3;$\frac{cos2β•sinβ}{\sqrt{2}cos(β+\frac{π}{4})}$=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△OAB中,已知P为线段AB上的一点.|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=3,且$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°.
(1)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值;
(2)若$\overrightarrow{BP}$=λ$\overrightarrow{PA}$,求当OP⊥AB时λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.不等式$\frac{1}{1-x}$<x+1的解集是{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列中,a1=10,q=1,则S5=(  )
A.10B.25C.50D.100

查看答案和解析>>

同步练习册答案