精英家教网 > 高中数学 > 题目详情
12.已知0<α<$\frac{π}{2}$,tanα=$\frac{4}{3}$,tan(α-β)=-$\frac{1}{3}$,则tanβ=3;$\frac{cos2β•sinβ}{\sqrt{2}cos(β+\frac{π}{4})}$=$\frac{6}{5}$.

分析 先根据两角差的正切公式求出tanβ,再根据而倍角公式求出sin2β,cos2β,根据倍角公式化简,并代值计算即可.

解答 解:∵0<α<$\frac{π}{2}$,tanα=$\frac{4}{3}$,tan(α-β)=-$\frac{1}{3}$,
∴tanβ=tan[α-(α-β)]=$\frac{tanα-tan(α-β)}{1+tanαtan(α+β)}$=$\frac{\frac{4}{3}+\frac{1}{3}}{1-\frac{4}{3}×\frac{1}{3}}$=3
∴sin2β=$\frac{2tanβ}{1+ta{n}^{2}β}$=$\frac{2×3}{1+{3}^{2}}$=$\frac{3}{5}$,
∴cos2β=$\frac{1-ta{n}^{2}β}{1+ta{n}^{2}β}$=$\frac{1-{3}^{2}}{1+{3}^{2}}$=-$\frac{4}{5}$
∴$\frac{cos2β•sinβ}{\sqrt{2}cos(β+\frac{π}{4})}$=$\frac{(co{s}^{2}β-si{n}^{2}β)•sinβ}{cosβ-sinβ}$=sinβ(cosβ+sinβ)=sinβcosβ+sin2β=$\frac{1}{2}$sin2β+$\frac{1}{2}$(1-cos2β)=$\frac{1}{2}$(sin2β+cos2β)-$\frac{1}{2}$=$\frac{1}{2}$($\frac{3}{5}$+$\frac{4}{5}$)+$\frac{1}{2}$=$\frac{6}{5}$,
故答案为:3,$\frac{6}{5}$.

点评 本题考查了两角和的余弦公式和两角差的正切公式,以及二倍角公式,属于中档题题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,则输出的i是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足a1=1,a2=-2,且an+1=an+an+2,n∈N*,则a5=2;数列{an}的前2016项和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若α∈(0,π),且sinα+2cosα=2,则tan$\frac{α}{2}$等于(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过点(1,-$\sqrt{3}$)的直线l与y轴的正半轴没有公共点,求直线l的倾斜角α的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数y=x2-4px-2的图象经过M(tanα,1),N(tanβ,1)两点.求2cos2αcos2β+psin2(α+β)+2sin2(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知各项为整数的等差数列{an}的前n项和为Sn,a1为首项,公差为d,对任意n∈N*,当n≠6时,总有S6>Sn,则a1的最小值是(  )
A.9B.11C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinα,cosα是方程8x2+6kx+1=0的两个根,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${9}^{2-lo{g}_{3}2}$=$\frac{81}{4}$.

查看答案和解析>>

同步练习册答案