精英家教网 > 高中数学 > 题目详情
18.已知抛物线C:y2=4x的焦点F,点P为抛物线C上任意一点,若点A(3,1),则|PF|+|PA|的最小值为4.

分析 设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|进而把问题转化为求|PA|+|PD|取得最小,进而可推断出当D,P,A三点共线时|PA|+|PD|最小,答案可得.

解答 解:抛物线C:y2=4x的准线为x=-1.
设点P在准线上的射影为D,
则根据抛物线的定义可知|PF|=|PD|,
要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小.
当D,P,A三点共线时,|PA|+|PD|最小,为3-(-1)=4.
故答案为:4.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,P,A三点共线时|PA|+|PD|最小,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义域为D的单调函数y=f(x),如果存在区间[m,n]⊆D,满足当定义域为是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“可协调区间”;如果函数y=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)的一个可协调区间是[m,n],则实数a的取值范围是(  )
A.-3<a<1B.-3<a<0C.0<a<1D.a<-3或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线x2=2py(p>0)的焦点F与椭圆$\frac{y^2}{4}$+$\frac{x^2}{3}$=1的一个焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)直线y=kx+1交抛物线于A,B两点,过A,B分别作抛物线的切线交于点P.
(ⅰ)探究$\overrightarrow{PF}•\overrightarrow{AB}$是否为定值,若是,求出定值;若不是,请说明理由;
(ⅱ)若直线PF与抛物线交于C,D,求证:|PC|•|FD|=|PD|•|FC|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=8x的焦点为F,过点F作直线交抛物线于点A,B,点M为AB的中点,过点M作准线的垂线,交抛物线于点P,若|FP|=$\frac{5}{2}$,则|AB|=(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角α的终边经过点A(-$\sqrt{3}$,a),若点A在抛物线y=-$\frac{1}{4}$x2的准线上,则sinα=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求(log23+log89)•(log34+log98+log32)+(lg2)2+lg20×lg5的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.画出“求s=1×log23×log34×log45×log56×log67×log78×log89×log910的值”的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知下列四个命题:
①若a>0,b>0,则alnb=blna
②若x∈R,则cos(sinx)=sin(cosx);
③不存在一个多项式函数P(x),使得对任意的实数x都有|P(x)-cosx|≤10-3
④若x>0,则x4+3+x-4≥5.
其中正确的命题的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把一枚硬币任意抛掷三次,事件A=“至少一次出现正面”,事件B“恰有一次出现正面”,则P(B|A)=(  )
A.$\frac{3}{7}$B.$\frac{3}{8}$C.$\frac{7}{8}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案