精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2sinxcosx+cos2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若θ为锐角,且f(θ+)=,求tan2θ的值.

(1) f(x)的最小正周期为=π,最大值为.(2) tan2θ==2.

解析试题分析:利用二倍角公式以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,
(Ⅰ)直接利用周期公式求出函数f (x)的最小正周期,最大值易求.
(Ⅱ)由f(θ+)=可得sin(2θ+)=,从而可得cos2θ=,再注意研究0<2θ<π,进而可利用求出sin2θ,进而可求出tan2θ=.
(1)f(x)=2sinxcosx+cos2x
=sin2x+cos2x
=(sin2x+cos2x)
=sin(2x+).
∴f(x)的最小正周期为=π,最大值为.…………(6分)
(2)∵f(θ+)=,  ∴sin(2θ+)=.  ∴cos2θ=.
∵θ为锐角,即0<θ<,∴0<2θ<π.
∴sin2θ=.
∴tan2θ==2.…………(13分).
考点:倍角公式及两角和的正弦公式,正切公式,函数的性质,同角三角函数的基本关系式.
点评:本题主要是利用三角函数的二倍角公式,两角和的正弦公式,求解函数的最小正周期和最值,还考查了利用同角三角函数式求出其余名函数值,进而得到tan2θ的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;  (2)若,求函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

( 本题满分12分) 已知函数
(1)求的最小正周期、单调增区间、对称轴和对称中心;
(2)该函数图象可由的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数的最小正周期为,当时,函数的最小值为0。
(1)求函数的表达式;
(2)在△,若的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知角终边上一点的坐标为
(1)求角的集合.
(2)化简下列式子并求其值:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
已知函数f(t)= ]
(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知函数 
(1)求的最小正周期和值域     (2)求的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
,且满足
(1)求的值.
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题12分)
已知函数
(Ⅰ)求的最小正周期,并求其单调递增区间;
(Ⅱ)当时,求的值域.

查看答案和解析>>

同步练习册答案