精英家教网 > 高中数学 > 题目详情
16.在直角坐标系xOy中,已知点A(1,1),B(3,3),点C在第二象限,且△ABC是以∠BAC为直角的等腰直角三角形.点P(x,y)在△ABC三边围城的区域内(含边界).
(1)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$求|${\overrightarrow{OP}}$|;
(2)设$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),求m+2n的最大值.

分析 (1)设C(a,b),a<0,b>0,根据向量的坐标运算和向量的模,以及向量的垂直的条件求出点C的坐标,再根据向量的加减运算求出P的坐标,问题得以解决,
(2)根据向量的坐标运算,以及线性规划,即可求出答案.

解答 解:(1)设C(a,b),a<0,b>0,
∵A(1,1),B(3,3),
∴$\overrightarrow{AB}$=(2,2),$\overrightarrow{AC}$=(a-1,b-1),
∵△ABC是以∠BAC为直角的等腰直角三角形,
∴|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,
∴$\left\{\begin{array}{l}{(a-1)^{2}+(b-1)^{2}={2}^{2}+{2}^{2}}\\{2(a-1)+2(b-1)=0}\end{array}\right.$,
解得a=-1,b=3
∴C(-1,3),
设P(x,y),
∵$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,
∴(1-x,1-y)+(3-x,3-y)+(-1-x,3-y)=(0,0),
∴3-3x=0,7-3y=0
∴x=1,y=$\frac{7}{3}$,
∴P(1,$\frac{7}{3}$),
∴|${\overrightarrow{OP}}$|=$\sqrt{{1}^{2}+(\frac{7}{3})^{2}}$=$\frac{\sqrt{58}}{3}$
(2)∵$\overrightarrow{AC}$=(-2,2),$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),
∴(x,y)=m(2,2)+n(-2,2)=(2m-2n,2m+2n),
∴x=2m-2n,y=2m+2n,
∴m=$\frac{1}{4}$(x+y),2n=$\frac{1}{2}$(y-x),
∴m+2n=-$\frac{1}{4}$x+$\frac{3}{4}$y,
设z=3y-x,直线z=3y-x经过点C(-1,3)时,z取得最大值,
即m+2n=$\frac{1}{4}$+$\frac{3}{4}$×3=$\frac{5}{2}$.

点评 本题考查了平面向量的数乘及坐标加法运算,考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在(0,+∞)上的减函数,则f($\frac{3}{4}$)与f(a2-a+1)的大小关系是(  )
A.f($\frac{3}{4}$)<f(a2-a+1)B.f($\frac{3}{4}$)>f(a2-a+1)C.f($\frac{3}{4}$)≤f(a2-a+1)D.f($\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cosxsin(x+$\frac{π}{6}}$)-cos2x-$\frac{1}{4}$,x∈R.
(1)求f(x)单调递增区间;
(2)求f(x)在[-$\frac{π}{6}$,$\frac{π}{4}}$]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P(m,n)落在直线x+y=4下方的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三条直线两两垂直,那么在下列四个结论中,正确的结论共有(  )
①这三条直线必共点;
②其中必有两直线是异面直线;
③三条直线不可能共面;
④其中必有两条在同一平面内.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0)且直线AB与直线CD平行,则m的值为(  )
A.0或1B.0C.0或2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如城某观光区的平面示意图如图所示,其中矩形ABCD的长AB=2千米,宽AD=1千米,半圆的圆心P为AB中点,为了便于游客观光休闲,在观光区铺设一条由圆弧$\widehat{AE}$、线段EF、FC组成的观光道路,其中线段EF经过圆心P,且点F在线段CD上(不含线段端点C,D),已知道路AE,FC的造价为2a(a>0)元每千米,道路EF造价为7a元每千米,设∠APE=θ,观光道路的总造价为y.
(1)试求y与θ的函数关系式:y=f(θ);
(2)当θ为何值时,观光道路的总造价y最小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2cos2x•($\sqrt{3}$cos2x-3sin2x)-$\sqrt{3}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{\sqrt{x+1}}{x}$的定义域是(  )
A.[-1,0)B.[-1,0)∪(0,+∞)C.(0,+∞)D.[-1,+∞)

查看答案和解析>>

同步练习册答案