分析 利用三角恒等变换化简函数的解析式,再利用余弦函数的周期性求得它的最小正周期.
解答 解:函数f(x)=2cos2x•($\sqrt{3}$cos2x-3sin2x)-$\sqrt{3}$=2$\sqrt{3}$cos22x-6sin2xcos2x-$\sqrt{3}$
=2$\sqrt{3}$•$\frac{1+cos4x}{2}$-3sin4x-$\sqrt{3}$=2$\sqrt{3}$($\frac{1}{2}$cos4x-$\frac{\sqrt{3}}{2}$sin4x)=2$\sqrt{3}$cos(4x+$\frac{π}{3}$),
故它的最小正周期为$\frac{2π}{4}$=$\frac{π}{2}$,
故答案为:$\frac{π}{2}$.
点评 本题主要考查三角恒等变换,余弦函数的周期性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,3] | B. | (1,3] | C. | (0,3] | D. | (-1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com