精英家教网 > 高中数学 > 题目详情
20.已知cosα=-$\frac{\sqrt{5}}{5}$,α∈(π,$\frac{3π}{2}$).
(1)求tanα的值;
(2)求$\frac{3sin(π+α)+cos(3π-α)}{sin(\frac{3π}{2}+α)+2sin(α-2π)}$的值.

分析 (1)利用同角三角函数基本关系式化简求解即可.
(2)利用诱导公式化简表达式,代入(1)的结果求解即可.

解答 解:(1)cosα=-$\frac{\sqrt{5}}{5}$,α∈(π,$\frac{3π}{2}$).sinα=-$\frac{2\sqrt{5}}{5}$,tanα=2.
(2)$\frac{3sin(π+α)+cos(3π-α)}{sin(\frac{3π}{2}+α)+2sin(α-2π)}$=$\frac{-3sinα-cosα}{-cosα+2sinα}$=$\frac{3tanα+1}{1-2tanα}$=$-\frac{7}{3}$.

点评 本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则tanθ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三条直线两两垂直,那么在下列四个结论中,正确的结论共有(  )
①这三条直线必共点;
②其中必有两直线是异面直线;
③三条直线不可能共面;
④其中必有两条在同一平面内.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如城某观光区的平面示意图如图所示,其中矩形ABCD的长AB=2千米,宽AD=1千米,半圆的圆心P为AB中点,为了便于游客观光休闲,在观光区铺设一条由圆弧$\widehat{AE}$、线段EF、FC组成的观光道路,其中线段EF经过圆心P,且点F在线段CD上(不含线段端点C,D),已知道路AE,FC的造价为2a(a>0)元每千米,道路EF造价为7a元每千米,设∠APE=θ,观光道路的总造价为y.
(1)试求y与θ的函数关系式:y=f(θ);
(2)当θ为何值时,观光道路的总造价y最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线C:y2=16x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{PF}$=4$\overrightarrow{FQ}$,则|QF|=(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2cos2x•($\sqrt{3}$cos2x-3sin2x)-$\sqrt{3}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(理科)求椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的点到直线l:x-2y-12=0的最大距离和最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知不等式|x+$\frac{1}{2}$|<$\frac{3}{2}$的解集为A,关于x的不等式($\frac{1}{π}$)2x>π-a-x(a∈R)的解集为B,全集U=R,求使∁UA∩B=B的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合M={x|x2-2x≤0},N={x|x2≥1},则M∩N=(  )
A.[0,1]B.[1,2]C.[0,2]D.[-1,1]

查看答案和解析>>

同步练习册答案