精英家教网 > 高中数学 > 题目详情
9.已知不等式|x+$\frac{1}{2}$|<$\frac{3}{2}$的解集为A,关于x的不等式($\frac{1}{π}$)2x>π-a-x(a∈R)的解集为B,全集U=R,求使∁UA∩B=B的实数a的取值范围.

分析 首先根据绝对值不等式,求出集合A;由指数函数的单调性,求出集合B,化简B,根据A∩B=A?A⊆B,求出a的取值范围

解答 解:由x+$\frac{1}{2}$|<$\frac{3}{2}$解得-2<x<1,则A=(-2,1),
∴∁UA=(-∞.-2]∪[1,+∞),
由($\frac{1}{π}$)2x>π-a-x,得2x<a+x,解得x<a,
∴B=(-∞,a),
∵∁UA∩B=B,
∴B⊆∁UA,
∴a≤2,
即a的取值范围为(-∞,-2]

点评 本题主要考查集合的包含关系及判断,考查绝对值不等式和指数不等式的解法,考查基本的运算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知直线y=mx与函数f(x)=$\left\{\begin{array}{l}{0.5{x}^{2}+1,x>0}\\{2-(\frac{1}{3})^{x},x≤0}\end{array}\right.$的图象恰好有3个不同的公共点,则实数m的取值范围是(  )
A.($\sqrt{3}$,4)B.($\sqrt{2}$,+∞)C.($\sqrt{2}$,5)D.($\sqrt{3}$,2$\sqrt{2}$ )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知cosα=-$\frac{\sqrt{5}}{5}$,α∈(π,$\frac{3π}{2}$).
(1)求tanα的值;
(2)求$\frac{3sin(π+α)+cos(3π-α)}{sin(\frac{3π}{2}+α)+2sin(α-2π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆O:x2+y2=4,直线l:x+y=m,若圆O上恰有4个不同点到l的距离为1,则实数m的取值范围为$-\sqrt{2}<m<\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=|lnx|,g(x)=$\left\{\begin{array}{l}{0,0<x≤1}\\{\frac{1}{8}|{x}^{2}-9|,x>1}\end{array}\right.$.则方程f(x)-g(x)-1=0实根的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的定义域为(0,+∞),则函数F(x)=f(x+1)+$\sqrt{3-x}$的定义域为(  )
A.[2,3]B.(1,3]C.(0,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若y=ax+m-1(a>0,a≠1)的图象在第二、三、四象限内,则(  )
A.a>1,m>0B.a>1,m<0C.0<a<1,m<0D.0<a<1,m>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A、B、C的对边分别是a、b、c,向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(2a+c,b),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角B的大小.
(2)若b=2,a+c=3,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段[40,50),[50,60),[90,100]后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

同步练习册答案