精英家教网 > 高中数学 > 题目详情
18.在△ABC中,角A、B、C的对边分别是a、b、c,向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(2a+c,b),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角B的大小.
(2)若b=2,a+c=3,求S△ABC

分析 (1)利用平面向量垂直的性质,正弦定理,三角形内角和定理可得2sinAcosB+sinA=0,结合sinA≠0,可求cosB,即可得解B的值.
(2)由余弦定理可求ac的值,利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(1)由向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(2a+c,b),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,
得(2a+c)cosB+bcosC=0,
得2sinAcosB+sinA=0,由于sinA≠0,可得:cosB=-$\frac{1}{2}$,
可得:B=$\frac{2π}{3}$…6分
(2)由b=2,a+c=3,B=$\frac{2π}{3}$,
∴22=a2+c2-2accosB=(a+c)2-ac,
∴可得:ac=5,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{5\sqrt{3}}{4}$…12分

点评 本题主要考查了平面向量垂直的性质,正弦定理,三角形内角和定理,余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如城某观光区的平面示意图如图所示,其中矩形ABCD的长AB=2千米,宽AD=1千米,半圆的圆心P为AB中点,为了便于游客观光休闲,在观光区铺设一条由圆弧$\widehat{AE}$、线段EF、FC组成的观光道路,其中线段EF经过圆心P,且点F在线段CD上(不含线段端点C,D),已知道路AE,FC的造价为2a(a>0)元每千米,道路EF造价为7a元每千米,设∠APE=θ,观光道路的总造价为y.
(1)试求y与θ的函数关系式:y=f(θ);
(2)当θ为何值时,观光道路的总造价y最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知不等式|x+$\frac{1}{2}$|<$\frac{3}{2}$的解集为A,关于x的不等式($\frac{1}{π}$)2x>π-a-x(a∈R)的解集为B,全集U=R,求使∁UA∩B=B的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{\sqrt{x+1}}{x}$的定义域是(  )
A.[-1,0)B.[-1,0)∪(0,+∞)C.(0,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,正方体ABCD-A1B1C1D1的棱长为1,P是棱BB1的中点,则四棱锥P-AA1C1C的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\vec a$,$\vec b$不共线向量,若向量$\overrightarrow{AB}$=2$\vec a$+k$\vec b$,$\overrightarrow{CB}$=$\vec a$+$\vec b$,$\overrightarrow{CD}$=2$\vec a$-$\vec b$,若A,B,D三点共线,则实数k的值等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合M={x|x2-2x≤0},N={x|x2≥1},则M∩N=(  )
A.[0,1]B.[1,2]C.[0,2]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,求点P的坐标
(2)一抛物线拱桥跨度为52m,拱顶离水面6.5m,一竹排上一宽4m,高6m的大木箱,问能否安全.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2cos(2x+\frac{π}{3})-2cosx+1$.
(1)试将函数f(x)化为f(x)=Asin(ωx+φ)+B(ω>0)的形式,并求该函数的对称中心;
(2)若锐角△ABC中角A、B、C所对的边分别为a、b、c,且f(A)=0,求$\frac{b}{c}$的取值范围.

查看答案和解析>>

同步练习册答案